Uncertainty assessment in subsurface modeling: considering geobody shape and connectivity in complex systems

Pauline Collon, Guillaume Rongier, Marion Parquer, Nicolas Clausolles, Guillaume Caumon
Uncertainties in subsurface

- Various data, various resolution

[SGU, 2019]

[Sikkema & Wojcik, 2001]

Gravity, electric and electromagnetic measurements

Seismic amplitudes

Well Logs

Core samples

Increasing resolution

Interpretation process

Increasing scarcity
Uncertainties in subsurface

- Various data, various resolution

[Sikkema & Wojcik, 2001]

Interpretation process

Increasing resolution

Increasing scarcity

Huge uncertainties

Gravity, electric and electromagnetic measurements

Seismic amplitudes

Well Logs

Core samples

[SGU, 2019]
Uncertainties in subsurface

- Various data, various resolution

Gravity, electric and electromagnetic measurements

Interpretation process

Increasing resolution

Well Logs

Core samples

Increasing scarcity

[Sikkema & Wojcik, 2001]

[SGU, 2019]

Huge uncertainties to represent and analyze them

Stochastic approaches
Uncertainties in subsurface

- Various data, various resolution

[SGU, 2019]

Gravity, electrical, electromagnetic measurements

- Huge uncertainties to represent and analyze them
- Stochastic approaches to reduce them
- Geological concepts
Considering geobody shapes and connectivity

• How to integrate geological knowledge in some specific environments?

→ Focusing on 2 examples

Channelized systems

[Rongier et al., 2017]

Salt tectonics

[Collon et al., 2016]
1. Channelized systems
The challenges of channelized environments

• **Linear elongated objects**

• **Evolution through times:**
 - Continuously (migration)
 - Abruptly:
 - Local avulsion
 - Global avulsion

• **Erosive processes:**
 - Loss of information

[Deptuck et al., 2003]
The Lindenmayer system

• **L-system** [Lindenmayer, 1968]:
 • Formal grammar
 • Modeling vegetals (e.g. trees)

Some stochastic flowers.
[Allen Pike]
How to simulate channels?

G. Rongier's PhD [2016]

- Analogs
- Seismic
- Wells

Parameters
Curvatures, amplitude, wavelength (…)

Channel morphology
L-system

Data conditioning
Constraints
How to simulate channels?

- Analogos
- Seismic
- Wells

Parameters
Curvatures, amplitude, wavelength (…)

Channel envelope
NURBS
[Ruiu et al., 2015]

Data conditioning
Constraints

Channel morphology
L-system

G. Rongier's PhD [2016]
Application: turbiditic channels

Constraints:
- The master channel sides
- The probability cube

[Rongier et al, 2017]
Application: adding well sedimentary data

Constraints:
- The master channel sides
- The probability cube
- The well data

[Rongier et al, 2017]
Intermediate Conclusion

L-systems can reproduce a trend...

Sand probability cube

Realization conditioned to the cube

Sand probability

[Rongier, 2016]
Intermediate Conclusion

L-systems can reproduce a trend...

Sand probability cube

300 m

1475 m

Realization conditioned to the cube

Reality

Sand probability

0

1

Sand probability cube [Deptuck et al., 2003]

[Deptuck et al., 2003]

[Deptuck et al., 2003]

... but not a precise stacking

[Deptuck et al., 2003]

[Rongier, 2016]
Channelized system modelling

• "Classical" approach
 • Direct: predict the system evolution
 • Physical modelling of geological processes

[Schema by Parquer]

e.g. [Ikeda et al, 1985]
[Pyrcz et al, 1996]
[Labourdette, 2008]
Channelized system modelling

• "Classical" approach
 • **Direct**: predict the system evolution
 • Physical modelling of geological processes
 • Difficulties to honour data
 • Heterogeneity model not completely reliable

[Schema by Parquer]
Channelized system modelling

- **Our Proposal:**
 - **Reverse Simulation**
 - Last channel modelling

[Schema by Parquer]

[Posamentier et al. 2003]
Channelized system modelling

• **Our Proposal:**
 • Reverse Simulation
 • Last channel modelling
 • Reverse modelling of the channel to generate a channelized system based on field observation

[Schema by Parquer]

[Posamentier et al. 2003]
What can we learn from field observations?

- **Natural migration of Mississippi**

 [Parquer et al, 2017]

 [Maps from US Army Corps of Engineers]
What can we learn from field observations?

- **Natural migration of Mississippi** [Parquer et al, 2017]
 - Migration considered by half-meander and decomposed into downstream and lateral components
 - Curvature / migration amplitudes
 - are only "slightly" linked
 - This relation is only relevant at half-meander scale
 - This relation is variable
 - There is a wide variety of migration patterns
A "mixed" approach for reverse migration

- ChaRMigS :
 - Geometrical description of migration process
 - With decomposition in downstream / lateral components
 - Uncertainties managed by geostatistical laws
 - Integration of abandoned meanders in the process

Satellite image of Tangnara river (Russia)
[Parquer et al., 2017]
A "mixed" approach for reverse migration

- ChaRMigS:
 - Geometrical description of migration process
 - With decomposition in downstream / lateral components
 - Uncertainties managed by geostatistical laws
 - Integration of abandoned meanders in the process

Estimated abandonment ages

[Parquer et al., 2017]

[Google Earth 63°12′2533″N 122°59′5373″E] 1 km
A "mixed" approach for reverse migration

- ChaRMigS:
 - Geometrical description of migration process
 - With decomposition in downstream / lateral components
 - Uncertainties managed by geostatistical laws
 - Integration of abandoned meanders in the process

One realization

[Parquer et al., 2017]

[Google Earth 63°12′2533″N 122°59′5373″E]
A "mixed" approach for reverse migration

• ChaRMigS:
 • Geometrical description of migration process
 • With decomposition in downstream / lateral components
 • Uncertainties managed by geostatistical laws
 • Integration of abandoned meanders in the process

A second one...

[Parquer et al., 2017]

Realization 2

[Google Earth 63°12’2533”N 122°59’5373”E] 1 km
The particularities of reverse migration

 Chronology

* Simplified evolution of the geometry of a half meander (top view)

 Abandoned meander facies data point
The particularities of reverse migration

Simplified evolution of the geometry of a half meander (top view)

Chronology

Simulation

Discrete event simulation

MSc: A. Cayrol
The particularities of reverse migration

- Honoring well data in reverse migration

(a) Point bar facies data
(b) Abandoned meander facies data

[Parquer, 2018]
Data conditioning in reverse migration

- Honoring well data in reverse migration

MSc: A. Cayrol

[Cayrol et al., RING Meeting 2019]
Perspectives

• Avulsion integration
• Go back into a wider context of subsurface modelling: petrophysical simulations, flow impact assessment ...
 • Mesh generation
 • Petrophysical simulations
 • Upscaling (?)
• Considering “rhythms” in migration...
2. Salt tectonics
The challenges of modelling salt tectonics

- **Salt modeling challenges** \cite{Collon2016}
 - Handling complex surfaces
 - Varying geometries and topologies
Stochastic salt modeling

• Sampling strategy
 • Similar to P-Field approaches [Lecour et al., 2001]
 • Reference model
 • Uncertainty bounds
 • Perturbation

After Thore et al. (2002)
Stochastic salt modeling

• Reference model
 • Pseudo-distance field D
 • Defines a “probability” of being in sediments
• Construction
 • Boundary constraints
 • Interpolation \cite{Irakarama2018}

Seismic image from Jackson and Lewis (2012)

\cite{Clausolles2019}
Stochastic salt modeling

• Perturbation
 • Spatially correlated random field φ
 • Sequential Gaussian simulation

• Distribution model
 \[\varphi \sim \begin{cases}
 0 & \text{if } \varphi < \text{threshold} \\
 1 & \text{if } \varphi \geq \text{threshold}
\end{cases} \]

• Variogram model
 \[V: 800 \text{m} \]

Seismic image from Jackson and Lewis (2012)

[Clausolles et al., 2019]
Sampling salt bodies

- Definition of the salt boundary
 - 0-Level set of $D_{pert} = D - \varphi$

- Multiple salt boundaries
 - Multiple perturbations φ

Seismic image from Jackson and Lewis (2012)

[Clausalles et al., 2019]
Stochastic salt modeling

- Assessment of the proposed method
 - Simulates salt bodies and their connectivity
 - Integrates punctual data (about boundary and weld)

[Clauzolles et al., 2019]
Stochastic salt modeling

- Assessment of the proposed method
 - Simulates salt bodies and their connectivity
 - Integrates punctual data (about boundary and weld)
 - Reproduces geological features (through parameter tuning)

[Clausolles et al., 2019]
Stochastic salt modeling

• Assessment of the proposed method
 • Simulates salt bodies and their connectivity
 • Integrates punctual data (about boundary and weld)
 • Reproduces geological features (through parameter tuning)
 • Limitations
 • Extraction of 3D welds
 • Generation of the uncertainty envelope
 • Validation of the simulated models
 • Parameter choice/inference, relations D/ϕ

Seismic image from Jackson and Lewis (2012)

[Clausolles et al., 2019]
Conclusions and perspectives
Conclusions and perspectives

• **Contributions:**
 • Numerous ideas are investigated
 • Integrating geological knowledge ➔ natural system studies *(e.g. Mississippi, karst network database)*
 • Pragmatic approach ➔ from available observations and data
 • Stochastic methods ➔ uncertainties and irreversibility of processes
Conclusions and perspectives

• Modelling perspectives:
 • Better conditioning to data (net-to-gross, lobes)
 • Application to real data (we are looking for...)
 • Go back into a wider context of subsurface modelling: petrophysical simulations, flow impact assessment ...
 • Integrating into an inverse procedure

• More and more sophisticated models:
 ➔ how to compare realizations?

A problem taken up in:
• [Rongier et al., 2016]: Metrics to compare connected structures in realizations
 ➔ Now a requirement to compare the associated dynamic impact
Perspectives

[©S. Leone, 1966]
Particular thanks to:

- The sponsors of the RING-Gocad Consortium for funding this research:
 - Schlumberger
 - CCR
 - Emerson
 - ANDRA
 - + 140 universities

- Emerson-Paradigm for providing the Skua-Gocad software and API.