Earthquake rupture properties and tsunamigenesis in the shallowest megathrust

V. Sallarès, C. R. Ranero, M. Prada, A. Calahorrano

CSIC

Article

Upper-plate rigidity determines depthvarying rupture behaviour of megathrust earthquakes

https://doi.org/10.1038/s41586-019-1784-0	Valentí Sallarès ¹ * & Cé	sar R. Ranero ^{1,2}		
Received: 21 June 2019				
Accepted: 20 September 2019	Seismological data provide evidence of a depth-dependent rupture behaviour of earthquakes occurring at the megathrust fault of subduction zones, also known as megathrust earthquakes ¹ . Relative to deeper events of similar magnitude, shallow earthquake ruptures have larger slip and longer duration, radiate energy that is depleted in high frequencies and have a larger discrepancy between their surface- wave and moment magnitudes ¹⁻³ . These source properties make them prone to generating devastating tsunamis without clear warning signs. The depth-dependent rupture behaviour is usually attributed to variations in fault mechanics ⁴⁻³ . Conceptual models, however, have so far falled to identify the fundamental physical causes of the contrasting observations and do not provide a quantitative framework with which to predict and link them. Here we demonstrate that the observed differences do not require changes in fault mechanics. We use compressional-wave velocity models from worldwide subduction zones to show that their common underlying cause is a systematic depth variation of the rigidity at the lower part of the upper plate – the rock body overriding the megathrust fault, which deforms by dynamic stress transfer during co-seismic slip. Combining realistic elastic properties with accurate estimates of earthquake focal depth enables us to predict the amount of co-seismic slip (the fault motion at the instant of the earthquake), provides unambiguous estimations of magnitude and offers the potential for early tsunami warnings.			
Published online: 27 November 2019				
Subduction megathrust earthquakes result f sliding within the seismogenic zone ⁸ , a fault s to extend from about 40–50 km to about 5–10 quakes initiating within the seismogenic zor from this limit, as evidenced for the 2011 Joho magnitude, <i>M</i> _m , of 9.1) and 2010 Maule event forming a particular class known as 'tsunami rupture only the shallownest, allegedly non-s megathrust ¹¹ (Extended Data Fig. 1). The seen acteristics of shallow ruptures suggest a de rupture proces ¹³ , commonly attributed to ties ⁴⁻³ . However, current conceptual models t ferences are qualitative and case-dependent; rupture otharacteristics individually, as if the lated factors, and do not pinpoint the primar upture processton ^{21,3} and large sli ^{45,5} for i	rom episodic, unstable usgment that is thought 0 km depth. Great earth- te can propagate updip ku-Okievente' (moment (M _n 8.8) ¹⁰ , while events earthquakes' appear to eismogenic part of the hanges in fault proper- trying to explain the dif- they treat the different y were caused by unre- y physical causes. Slow instance, are commonly	We propose a conceptual change to this unsolved question. Ou hypothesis is that changes in fault mechanics are not necessaril required to explain the observed depth-dependent trends of the rup ture characteristics. Instead, we postulate that the trend mainly reflect depth variations of the elastic properties of the overriding plate at larger scale. This hypothesis stands on the fact that downgoing oceani slabs and overriding plates exhibit contrasting patterns of permanen deformation ²³⁵ (Fig. 1). Overriding plates display widespread contra- tional structures indicating a dominant sub-horizontal principal com pressional stress, whereas oceanic plates are dominated by extension faulting, implying a near 90° rotation of the orientation of the princips stresses across the megathrust. Sedimentary strata of underthruss ing plates have sub-horizontal attitude, typically lack contractions deformation and are cut by normal faults, supporting the idea that th principal compressional stresses are sub-vertical immediately belo		

ea that the tely below ctures and attributed to the presence of weak subducting sediment¹⁶, whereas the inferred orientation of principal stresses support the idea that the pore-pressure-related weakening^{4,5} and a depth-dependent distribueelastic energy released during megathrust earthquakes has accumution of initial stresses⁶ have also been proposed to explain large slip lated in overriding plates (Fig. 1). Correspondingly, co-seismic deforand high-frequency depletion. None of these models has been used mation should affect overriding plates, with negligible effect on the to explain the remarkable discrepancy between M_w and surface wave underthrusting plates. Hence, the recorded tectonic history indicates that the elastic properties of the overriding plate need to be considered

Barcelona Center for Subsurface Imaging, Institute of Marine Sciences, CSIC, Barcelona, Spain, 9CREA, Barcelona, Spain, 1e-mail: vsallares@icm.csic.es

96 | Nature | Vol 576 | 5 December 2019

 \bigcirc

Ì

magnitude, M₁, for shallow earthquakes.

Cited as Sallarès & Ranero (2019) from here on

Fault mechanics vs elasticity of rocks undergoing deformation

Image by Angelo Giordano at Pixabay

Geophysical data (Multichannel Reflection Seismics, MCS)

Upper and lower plate have contrasting patterns of permanent deformation ~90° rotation of the main stresses Upper plate deformation, faulting and hence fracturing increase trench-ward

coast

Upper plate

slope sediment

& debris

L1 L3 L5

Sallares et al (2013)

Other geophysical data

0

incomino

sediment

Institut de Ciències del Mar

Compilation of 48 WAS V_P models at Circum-Pacific and Indian ocean subduction zones (31 in erosional margins, 17 in accretionary margins)

Only models that include Vp distribution and interplate geometry \rightarrow digitize seafloor & inter-plate boundary depth + Vp above inter-plate boundary

Clear systematic, universal trend of V_P increase with upper plate thickness regardless of crustal lithology and margin type

Upper plate

Upper-plate elastic parameters

We estimate $\rho(Vp)$, Vs(Vp) from Brocher (2005) Then rigidity $\mu(\rho, Vs)$

0.

- 01 Depth (km) - 15 -

20 -

Incoming

sediment

Subducting plate

Wedge

Moho

Faults Slope sediment

The physical model

The base of the upper plate above the seismogenic zone is increasingly fractured towards the trench, mainly reflecting compaction due to lithostatic burden. The resulting depth-dependent rigidity explains differences between shallow and regular EQs.

Relative rupture properties as a function of depth

1) Co-seismic slip

$$M_0 = \int_S \mu D \mathrm{d}\mathbf{s} \approx \overline{\mu} \overline{D} S$$

M₀ Seismic moment µ rigidity $D(\delta)$ Slip S rupture area

$$D_{\mathrm{R}}(z) = \frac{D(z)}{D^*} = \frac{\mu^*}{\mu(z)}$$

If we have two earthquakes of the same rupture surface, S, and seismic moment, M_0 (so same M_W), one occurring at the regular domain and the other at the shallow domain, then

 D_s should be up to 5-10 times larger than D_d

0 km

5 km

10 km

15 km

20 km

Seaflor

6.0 km/

Sallarès & Ranero (2019)

Larger slip Slower propagation

High I deplot arger Mw-M.

lathrust fault plane

Faster propagation Shorter duration

Higher I conten

3) High frequency depletion (subdued seismic shaking)

Tsunami Earthquakes							
2	9	1992	7.0	7.6	Nicaragua	77	
20	11	1960	6.75	7.6	Peru	78	
21	2	1996	-	7.5	Peru	79	
25	3	1947	7.2	7.1	Hikurangi	80	
3	1	2010	-	7.1	Solomon	81	
2	6	1994	7.2	7.6	Java	82	
17	7	2006	7.2	7.8	Java	83	
25	10	2010	7.1	7.8	Mentawai	11	
15	6	1896	7.2	8.0	Sanriku	84	
10	6	1975	7.0	7.5	Kurile	78	
20	10	1963	7.2	7.8	Kurile	78	
1	4	1946	7.4	8.2	Aleutian	85	

Average M_W - M_S for tsunami EQs is 0.65

For a M_W 7.5 earthquake, discrepancy due to M_0 alone is of 0.2-0.3 However, V_s variation with depth can account for a difference of up to 0.7-0.8

Conceptual model

Explains well global trends of characteristics and differences between shallow and deeper (regular) ruptures

Show that tsunami earthquakes are not 'anomalous' in terms of rupture properties

DOES IT EXPLAIN RUPTURE OF INDIVIDUAL EVENTS?

The 1992 Nicaragua tsunami earthquake

M_w 7.6-7.8; M_s 7.0-7.2 Depleted on high frequencies (moderate shaking)

Long duration (>100 s), slow propagation

Triggered a large tsunami (up to 10m high)

Nucleated at ~20 km depth

Large moment release near the trench

Moment release from Ihmlé (1996)

NIC 20

50107

NIC 50

© All rights reserved

Depth-varying elastic properties

Brocher's (2005) Vp-Vs & Vp-p empirical relationships

Rupture characteristics: Slip

$$M_0 = \int_S \mu D \mathrm{d}\mathbf{s} \approx \overline{\mu} \overline{D} S$$

M₀ Moment (Ihmlé, 1996)
µ Shear modulus (our models)
D Slip
S rupture area (subfaults of 10x10 km)

Maximum slip of >10 m at the trench Consistent with tsunami modelling, which requires larger near-trench co-seismic slip at trench than estimated from seismological data alone (constant μ)

Rupture characteristics: f_c & high frequency depletion

Observed moment-rate from Ye et al (2013) EPSL

