

Future Snow Water Equivalent and Snowmelt Extremes from NA-CORDEX Ensembles

Eunsang Cho¹, Rachel McCrary², Jennifer Jacobs¹

¹University of New Hampshire, NH, USA ²National Center for Atmospheric Research, CO, USA

2020 EGU Sharing Geoscience Online May 4th 2020

Background – Snow-driven Extreme Events in U.S. and Canada

- Snow and snowmelt driven extreme events can have large societal and economic consequences. Extreme snow can *damage infrastructure and buildings*.
- Snow meltwater is a dominant driver of *severe spring flooding* in the north-central and -eastern U.S. and southern Canada.
- The current and future snowpack and snowmelt extreme design maps are very limited *due to the lack of reliable long-term snow data*.

Motivation

The "current" U.S. government standard design precipitation maps (e.g. Atlas 14) are based on liquid precipitation data with **very limited guidance on snowmelt-driven floods**.

 \rightarrow We recently developed 25- and 100-year return level snowpack (SWE; snow water equivalent) and snowmelt maps over the continental U.S. (*Cho & Jacobs, 2020*)

Cho & Jacobs (2020; in preparation)

However...

engineers are still challenged to plan and design infrastructure for **the "future" SWE & snowmelt extremes in a changing climate**.

1. How much will snow-driven extreme events be changed in the mid-century and late-century from the current condition?

2. Which regions have the largest differences (uncertainty) among models in the future condition?

NA-CORDEX SWE data

- North America COordinated Regional Downscaling Experiment (NA-CORDEX) regional climate model (RCM) ensemble.
- Multiple RCMs are used to dynamically downscale multiple CMIP5 global climate models (GCMs).
- 25km resolution SWE simulations
 (3 RCMs, 7 GCMs, 9 Simulations)
 - Study period
 - Historical (1976-2005)
 - Mid-century (2040 2069)*
 - Late-century (2070 2099)*

*Future runs follows RCP8.5 emissions scenario

	CRCM5 (UQAM)	RegCM4	WRF	CanRCM4
HadGEM2-ES		Х	Х	
CanESM2	x			x
MPI-ESM-LR	x	Х	X	
MPI-ESM-MR	х			
GFDL-ESM2M		Х	X	
GEMatm-Can	x			
GEMatm-MPI	x			

* RegCM4 models are excluded due to unrealistic wet estimates & numerical problems with snow.

Method

Annual maximum 7-day snowmelt event ($Melt_{max,7d}$)

$$Melt_{max,7d} = \max(SWE_i - SWE_{i+7})$$

i is a date from 1 October to 31 May for each year

Generalized Extreme Value (GEV) Distribution

To estimate **25-yr** extreme values for the three periods, the GEV distribution was used. The standard cumulative distribution of the GEV can be expressed as

$$\Psi(x) = \exp\left\{-\left(1+\zeta\left(\frac{x-\mu}{\sigma}\right)\right)^{\frac{-1}{\zeta}}\right\}$$

where the shape parameter (ξ), the location parameter (μ), the scale parameter (σ) and to specify the tail behavior, the center, and the deviation around μ of the GEV distribution, respectively.

Result 1 – Future Changes in 25-yr Annual Max SWE ensemble

Result 1 – Future Changes in 25-yr Annual Max Snowmelt

Result 2 – How much change by U.S. regions?

Result 3 – Which regions have the largest differences among models

Result 3 – Which regions have the largest differences among models

Conclusion

Q1. How much will snow-driven extreme events change in the midcentury and late-century across the north America?

- Extreme SWE events will decrease by up to 150 mm (mid-century) and 500 mm (late-century) and, for snowmelt, 50 and 100 mm over the western mountain ranges.
- 2. Also, there are considerable decreases in northeastern U.S. and southern Ontario and Quebec, Canada.

Q2. Which regions have the largest differences (uncertainty) among models in the future condition?

- 1. For absolute variations (Std), there are the largest differences in the western mountain regions.
- 2. For relative values (CV), the mountains have relatively low variability, the central and southern parts of the U.S. have large differences among models.

Acknowledgement

We gratefully acknowledge the support from *NASA Water Resource Applied Science Program* (NNX15AC47G). The authors are grateful to all colleagues who contributed to the NA-CORDEX datasets.

Reference

Cho, E. & Jacob, J. M. (2020) Extreme Value Snow Water Equivalent and Snowmelt for Infrastructure Design over the Contiguous United States, preprinted at ESSOAr <u>https://doi.org/10.1002/essoar.10501588.1</u>

Thank you!

Question?

Eunsang Cho ec1072@wildcats.unh.edu

