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Interpreting past Carbon cycle events

Geologic record contains evidence of past Carbon (C) emissions accompanied by extensive
environmental change

e In particular, Large Igneous Province emplacements caused largest pre-industrial C emissions
(e.g. Ontong Java Plateau eruption coincident with Oceanic Anoxic Event 1a ~120 Ma)

e Studying the Earth system response to these events requires knowledge of the strengths of
forcing and feedbacks

©Authors. All rights reserved 1




Reconstructing C fluxes from C isotopes

» Cisotope excursions are evidence for altered C fluxes

Example: Oceanic Anoxic Event 1a (~120 Ma)

time
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Reconstructing C fluxes from C isotopes

» Cisotope excursions are evidence for altered C fluxes
* The sign of the excursion holds information about likely nature of dominant C fluxes

Example: Oceanic Anoxic Event 1a (~120 Ma)

time

Earth system feedbacks
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Reconstructing C fluxes from C isotopes

» Cisotope excursions are evidence for altered C fluxes

e The direction of the excursion holds information about likely nature of dominant C fluxes
* C fluxes from to assumed sources/sinks can be estimated with C cycle models

* But: C sources/sinks cannot be identified unambigously

* And: Temporally overlapping C fluxes cannot be distinguished

Example: Oceanic Anoxic Event 1a (~120 Ma)

time

8 -0.1 Gt Clyr

© +0.1 Gt C/yr
+0.2 Gt C/yr

Earth system feedbacks
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Why are Sr, Os, Li and Ca isotopes useful?

Proxy-pontential of Sr, Os, Li and Ca
* processes that govern C cycle on long timescales also control metal cycles (e.g. mantle
emissions, continental weathering)

« source of metal fluxes can be identified due to distinct isotopic composition of continental
run-off and mantle

* local sediment cores can yield global signals because of long residence times in the ocean
and inter-basinal isotopic homogeneity

* apart from Ca, little biological relevance, hence less complex vital effects?

These metal isotopes are used to understand periods of environmental change
* Glacials - Interglacials
* Eocene/Oligocene Transition

» Paleocene-Eocene Thermal Maximum
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The added value of metal isotopes for reconstructing C fluxes

Example: Oceanic Anoxic Event 1a (~120 Ma)
* Metal isotopes are used to determine time

changes in metal sources/sinks —_ ——---
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The added value of metal isotopes for reconstructing C fluxes

Example: Oceanic Anoxic Event 1a (~120 Ma)
* Metal isotopes allow identification of e

specific sources/sinks T ____C
——=—==-== Earth system feedbacks
carbon injection

* Isotope mixing models can constrain C

fluxes based on metal isotope excursions Q. _,0',1 N G

© 401 Gt C/
. . P yr

But: Isotope mixing models are often run 5 0.2

without dynamic C cycle although metal &

cycles are sensitive to long-term C cycle 4 +0.6.Gt C/yr

changes. Does this affect estimates of ©

external forcing/internal feedback strength? ?,f) ***********
5 -0.2 Gt C/yr

+0.4 Gt C/yr
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Outline of our research for this talk:

How do Carbon cycle feedbacks affect the evolution of metal isotope excursions during episodes
of enhanced volcanism?

Simulations with a 3D Earth system model including dynamic cycles of C and metal isotopes
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c¢GENIE - 3D Earth system model of intermediate complexity

: Features of cGENIE
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Methods: Transient increase in hydrothermal input

Experiment set-up

* different increase factor: 2, 4, 6, 10 x pre-industrial (PI)

* simulations of increased metal input without C emissions and of combined C and metal
input increases (1, 2 x C:metal ratio in PI hydrothermal systems)

* higher input is sustained for 10, 100 or 500 kyr and is then returned to pre-event value

o

~

hydrothermal activity

750 1000 1250

0 250 500
simulation time (kyr)

©Authors. All rights reserved 7



Hydrothermal event (10 kyr) & recovery

Scaling of metal input
hydrothermal event
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Hydrothermal event (100 kyr) & recovery

Scaling of metal input
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Hydrothermal event (500 kyr) & recovery

Scaling of metal input
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Hydrothermal event (500 kyr) & recovery - larger C emissions (2x C:metal,,q p/)

Scaling of metal input
hydrothermal event 1xHYDp
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Example 1: C cycle effects on 8’ Sr/*°Sr exursion amplitude

Static CO, (no extra C emissions):

* Without C cycle feedbacks, there
is a good correlation between
87Sr/%8Sr exursion amplitude and
the total amount of Sr emitted
from the mantle

0.0000

-0.0001

—0.0002

—0.0003

—0.0004

peak 87Sr/88Sr excursion

—0.0005

—0.0006

Experiment class
] o #  without C-cycle

4

*

+
+
L]
¢
0.0 0.5 1.0 15 2.0

cumulative hydrothermal Sr emissions (105 mol)
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Example 1: C cycle effects on 8’ Sr/*°Sr exursion amplitude

Dynamic CO,, 1xC:metaly 4 p:

* C cycle feedbacks reduce the
87Sr/%8Sr exursion amplitude
through increased delivery of
continental Sr

0.0000

—0.0001

peak 875r/88Sr excursion

—0.0005 1

—0.0006 1

—0.0002

—0.0003

—0.0004

Experiment class
4‘% ® with C-cycle
R 4 without C-cycle
9
9
¢ o
]
L]
¢
o
14
0.0 0.5 1.0 15 2.0

cumulative hydrothermal Sr emissions (10%> mol)
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Example 1: C cycle effects on 8’ Sr/*°Sr exursion amplitude

Dynamic CO;, 2x C:metaly,q p:

 C cycle feedbacks reduce the Experiment class
0.0000 G‘w ® with C-cycle

87St/%Sr exursion amplitude P . ¢ without C-cycle

through increased delivery of -0.0001 1

<z

continental Sr

—0.0002

In simulations with doubled C

—0.0003

emissions, the negative 8 Sr/Sr
exursion is reduced by up to 85%.

—0.0004 °

Interpreting this isotopic excursion

peak 875r/88Sr excursion

without accounting for the ~0.0005 |
dampening effect of C cycle
feedbacks would lead to

substantial underestimation of the 00 05 10 15 20
cumulative hydrothermal Sr emissions (10%> mol)

—0.0006 4

magmatic forcing.
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Example 2: C cycle effects on '®”Qs/'® s peak excursion timing

Timing of 870s/1880s excursion peak (kyr)

500

400

300

200

100

Experiment class

4 without C-cycle

6 2&0 460 560 860
cumulative hydrothermal Os emissions (10% mol)

Static CO, (no extra C emissions):

* Without C cycle feedbacks, the
1870s/188 Qs peak excursion occurs
later if the emission is slower
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Example 2: C cycle effects on '®”Qs/'® s peak excursion timing

500
Experiment class

@ with C-cycle

4 without C-cycle

400 4

Dynamic CO,, 1x C:metaly,q p:

300 4

* Enhanced weathering prevents the
200 negative '®”0s/'®0s excursion

from growing further beyond 100
kyr

100

Timing of 1870s/1880s excursion peak (kyr)

0 200 400 600 800
cumulative hydrothermal Os emissions (10° mol)
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Example 2: C cycle effects on '®”Qs/'® s peak excursion timing

Timing of 1870s/1880s excursion peak (kyr)

500

400 4

300 4

200 1

100

Experiment class
@ with C-cycle
4 without C-cycle

0 200 400 600 800
cumulative hydrothermal Os emissions (10° mol)

Dynamic CO;, 2x C:metaly,q p;:

* A stronger weathering response
further reduces the timing of the
1870Qs/1880s peak excursion, but
the difference is smaller than
compared to a scenario without
weathering feedback
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What we learned so far

C cycle feedbacks alter metal isotope excursions:

» dampened/increased excursion amplitudes
* earlier excursion peaks
¢ faster recoveries

* positive overshoots during recoveries

The size of these effects depends on:

¢ duration of forcing

e C:metal of forcing Forcing
* relative sizes of metal fluxes from mantle and run-off

* isotopic offsets between mantle, seawater and run-off Background state

* potential for increasing metal delivery from run-off
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Other ongoing work: Simulating past background states

In a model with coupled dynamic C and metal cycles, the background state is more
constrained than in offline models.

Simulating realistic a background state requires
changes in boundary conditions which simultaneously

satisfy differences in C and metal cycle proxies. Effect of changed boundary conditions (BC) on simulated

seawater:

[ ——Proxy | 7005 | #7seosr [ 6% [ 47Li | §*/9%Ca [ 5"°C | COp
changing BC 1 = - z - T = -
changing BC 2 + + + - - = +
changing BC 3 +

187OS/1880SZ 0.5 lower (Bottini et al. 2012) changing BC 4

87SI’/8GSI‘Z 0.0015 lOWQI‘ (Jones & Jenkyns 2001)

. Proxy evidence:
0’Li: 6-10%0 lower .ccher et a. 2015) PI —> Cretaceous | = =] ? |-

644/40Ca: 0-0.2%0 higher (Blittler et al. 2011)
atmosph. pCOy: 3-5x higher ous et 2016
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Conclusions

C cycle feedback strength affects shape and amplitude of metal isotope excursions

Pre-event C cycle state thus also pre-conditions metal isotope response to perturbations

Amount of injected C is large
C:metal ratio of external sources is high

External sources stay active across timescales of C cycle feedbacks

$

Quantitative constraints on external forcing or internal feedback strength from metal
isotopes can be improved with coupled C- and metal dynamics
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