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Verification of WRF with 
Systematically Varying 

Parameterizations

The systematical variation of all combinations results in

>100 configurations

Initial Condition GDPS

NWP Model WRF v3.8.1

Grid Spacings 27 – 9 – 3 km 3 grids

Vertical Levels 65

Time Period 2016 1 year

Forecast Horizon 3 days

Microphysics

Cumulus Cloud

Land Surface

PBL & Surface Layer
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Model Configurations:
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Verification of WRF with 
Systematically Varying 

Parameterizations

55 Stations with Hourly Observations:
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Metrics for Continuous Forecasts* Metrics for Categorical Forecasts*

Verification of the Individual Configurations

However,
the ‘best-performing’ 
model is unique to the 
user, based on which 
verification metric(s) are 
most important to their 
application.

Thom|KF|ACM2|NoahMP

Thom|GF|YSU|NoahMP

Thom|KF|YSU|NoahMP

WSM5|KF|GBM|NoahMP

WSM5|KF|YSU|NoahMP

Overall best 
performing models:
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White colors indicate average 
values of the ensemble;

values better than the average 
are highlighted in green;

values worse than the average 
are highlighted in red.

* Metrics calculated from 6-hourly precipitation on the 9-km grids (time and location-averaged) 4/12



Verification Across the Region

Note, that the color 
scale does not extend 
to the true outliers!

Relative bias (WRF-Obs / Obs) of 6-hourly precipitation by location as ensemble and seasonal average:

➢ The bias in the cold/wet season is larger in relative magnitude than in the warm/dry season.
Some stations have a very strong wet bias especially at the coarser grid.

➢ In the cold season central Vancouver Island verifies too dry, the Coast Range verifies too wet, highly populated areas (e.g. 
metro Vancouver, Fraser Valley, Victoria) have small errors in comparison – Suggests overdone orographic influences.

Note, the significant 
difference in model terrain 
between the domains!
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Too wet

Too dry



Seasonal Performance Variation

➢ GF models perform better in the warm and drier season (reduced wet bias compared to KF)
➢ KF models perform better in the cold and wet season, which contributes the majority of the total precipitation in BC
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Resolution dependent Performance

➢ MAEs are worse for finer 
grids. GF models show a 
surprisingly large grid 
dependency.

➢ Pearson Correlation 
Coefficients decrease with 
finer grid spacings. The 
change with resolution is 
more significant than the 
spread between the 
models.

➢ The relative Standard 
Deviation (STD) is larger for 
finer grids on average (as 
fine grids can represent 
more detail and are prone 
to double penalty), where 
STDs are more sensitive to 
model configurations than 
grid spacings.

➢ The relative Biases are 
larger for coarser grids.
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Error metrics for 6-hourly precipitation 
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Performance for Common vs Extreme Events

Contingency 
Table Variables:

Equitable Threat 
Score (ETS):

E
T

S

Error bars show 
spread between 
individual models
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➢ The temporal resolution has a larger impact 
on the forecast performance than the spatial 
resolution.

➢ The total number of correct forecasts (where 
correct negatives are often the majority) 
improves with finer grids and shorter 
accumulation windows.

➢ The hit rate decreases significantly for more 
difficult forecasts (extreme events and 
shorter time).

➢ The best hit rate is achieved by the coarsest 
grid for events > 0.25mm, whereas 75th- and 
95th-percentile events have the highest hit 
rate at the mid-size domain.

➢ The ETS for 75th and 95th percentiles are best 
at the 9-km grid, followed by 3-km grid; it is 
worst at the 27-km grid.

➢ The false-alarm rate often exceeds the miss 
rate: WRF overpredicts precipitation 
frequencies.



Predictability with Forecast Horizon and Accumulation Window

➢ Ensemble-mean MAE’s and correlation coefficients improve asymptotically with extended accumulation windows. 
The improvement is rapid within the first day and levels out after about 2 or 3 days of accumulation.

➢ Correlation coefficients are only best at the coarsest grid for accumulation periods up to 1 day, then the finer grids 
become better.

Longer accumulation windows are more likely to capture the entirety of a rain event and compensate for potential 
temporal offsets between forecasted and observed rainfall. On the other hand, important information about variable 
precipitation rates at time scales shorter than a given accumulation window are averaged out and poorly represented.

1 day 2 days 3 days 4 days 5 days 6 days
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➢ All models are highly correlated with one another (27-km more than 3-km due to dynamical downscaling).
➢ The cumulus scheme is most important for precipitation at coarser resolutions (especially models that use KF 

produce very similar precipitation); the combination of cumulus with microphysics becomes more important as 
resolution increases.

➢ PBL schemes have a minor, and the choice of land surface scheme has the lowest impact on precipitation forecasts.

Model interdependence
Hierarchical clustering

Pearson 

Correlation 

Coefficient
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KF

GF Thom-KF/GF
Morr/WSM5-KF

Morr/WSM5-GF



1 year of numerical weather prediction data from over 100 WRF configurations reveals:

➢ Cumulus and microphysics together are most important for total model precipitation.

➢ WSM5 yields competitive verification scores when compared to more sophisticated and computationally 
expensive microphysics. (Model runs with Thom and Morr take on average ~20% longer than with WSM5.)

➢ In contradiction to what one might expect for a scale-aware cumulus scheme, GF did not outperform the 
conventional KF scheme at finer resolutions. Although GF performed better for convective precipitation in 
summer, KF was better across all scales for cold-season frontal precipitation, which contributes the majority 
of the annual rainfall in southwest BC.

➢ Using Noah MP yields slight yet consistent improvements (compared to the older Noah land surface model).

➢ Coarser grids had smaller random errors, smaller MAEs, and higher correlation coefficients compared to finer 
grids. Categorical forecasts on finer grids resulted in better frequency biases, ETS’s, and accuracies, which 
means that they had the largest fraction of correct forecasts (although most of the total correct forecasts are 
correct rejections). The midsize domain (9-km) had the highest hit rate and ETS for 75th and 95th-percentile 
precipitation.

➢ Extended accumulation windows can greatly improve precipitation verification scores. Temporal resolution 
has shown a larger impact on the forecast performance than the spatial model resolution.

Summary & Conclusions
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J. Jeworrek et al. (2020): WRF Precipitation 
Performance and Predictability with Systematically 
Varying Parameterizations over Complex Terrain. In 
Preparation.

Thank you!

© Stephen Tait

Predictability of Precipitation in Complex Terrain using 
the WRF Model with Varying Physics Parameterizations

Julia Jeworrek, Gregory West, Roland Stull
Contact: jjeworrek@eoas.ubc.ca

Stay healthy!
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