Impact of Atmospheric and Model Physics Perturbations On a High-Resolution Ensemble Data Assimilation System of the Red Sea

Sivareddy Sanikommu, Habib Toye, Peng Zhan, Sabique Langodan, George Krokos, Omar Knio, and Ibrahim Hoteit

King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

Email: sivareddy.sanikommu@kaust.edu.sa

Online Presentation for the EGU 2020 displayed between 1 April-31 May, 2020
Objective

✓ To demonstrate the importance of accounting various sources of uncertainty in ocean data assimilation systems.

✓ To provide improved high-resolution ocean reanalysis for the Red Sea (RS), which in turn help to improve ocean forecasts of the basin on a range of time scales.
Quick look at the basic concept(s) related to the present study
What are the Sources of **forecast errors** in Ocean models?

- Uncertainties/errors in
 - Ocean initial conditions
 - Atmospheric forcing
 - Model Physics
 - Open Ocean boundary conditions (more relevant for the regional models)
 - Bathymetry (more relevant near coast)

This information of uncertainty is an important input for ocean data assimilation.
Data Assimilation: What does it do?

Data Assimilation corrects the model trajectory based on sparse observations.

\[
X^a = X^b + BH^T [HBH^T + R]^{-1} [Y - HX^b]
\]

- **No Assimilation**
- **Assimilation**

\[
\begin{align*}
X^a &\quad \rightarrow \quad \text{Analysis} & X^b &\quad \rightarrow \quad \text{Forecast} \\
Y &\quad \rightarrow \quad \text{Observations} & H &\quad \rightarrow \quad \text{Transformation/Interpolation operator} \\
B &\quad \rightarrow \quad \text{Forecast error covariance} & R &\quad \rightarrow \quad \text{Observations error covariance}
\end{align*}
\]
What is the Role of Forecast Error Covariance (B)?

\[
X^a = X^b + BH^T [HBH^T + R]^{-1} [Y - HX^b]
\]

\[B=\begin{bmatrix}
B_{11} & B_{12} & \cdots & B_{19} \\
B_{21} & B_{22} & \cdots & B_{29} \\
B_{31} & B_{32} & B_{33} & \cdots \\
\vdots & \vdots & \cdots & \vdots \\
B_{91} & B_{92} & \cdots & B_{99}
\end{bmatrix}\]

\[
\begin{pmatrix}
x_1^a \\
x_2^a \\
x_3^a \\
\vdots \\
x_9^a
\end{pmatrix} = \begin{pmatrix}
x_1^b \\
x_2^b \\
x_3^b \\
\vdots \\
x_9^b
\end{pmatrix} + \begin{pmatrix}
B_{13} \\
B_{23} \\
B_{33} \\
\vdots \\
B_{93}
\end{pmatrix}\frac{(y_0 - x_3^b)}{(B_{33} + \sigma_o^2)}
\]

Model Grid

Observation location

\[X^b = \begin{bmatrix}
x_1^b \\
x_2^b \\
x_3^b \\
\vdots \\
x_9^b
\end{bmatrix} \quad Y = \begin{bmatrix} y_0 \end{bmatrix} \quad R = \begin{bmatrix} \sigma_o^2 \end{bmatrix}
\]

\[H = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}\]

B propagates observations information from one grid/location/variable to another.
Brief description about the assimilation system and Experiments conducted
Configuration of Red Sea Data Assimilation System

- Model: 4km-MITgcm
- Assimilation: DART with Ensemble Adjustment Kalman Filter (EAKF)
- Ensemble members: 50
- Localization: ~300 km in the horizontal; No vertical localization
- Inflation: 1.1 (10%)

Observations assimilated:
- Satellite Level-4 Reynolds SST. Observation error used is between 0.1 to 0.6 degC
- Satellite Level-3 altimeter SLA (merged). Observation error used is 4cm.
- In situ T & S profiles from EN4 dataset (fully QC’d). Observation error used for T & S profiles is 0.5 degC and 0.2 psu respectively

Initial conditions: 1st Jan, 2011
- Free model: WRF5km evolved simulation
- MITDART: 50 ensembles prepared based on hind casts re-centered on 1st Jan, 2011

Forcing
- Free model: Ensemble (50) mean of ECMWF 0.5 x 0.5 perturbed forcing
- MITDART: ECMWF 0.5 x 0.5 perturbed forcing (50 members)

OBCS: Daily averaged ocean state from 25km-resolution GLORYS ocean reanalysis
- Length of Experiments: 1 year starting from 1st Jan, 2011
Configuration of Experiments

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Initial condition</th>
<th>Atm. Forcing</th>
<th>Physics</th>
<th>Assimilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_{exp})</td>
<td>Single. 1(^{st}) Jan, 2011</td>
<td>Ensemble mean</td>
<td>STANDARD</td>
<td>No</td>
</tr>
<tr>
<td>(I_{exp})</td>
<td>50-member ensemble based on hindcasts recentered for 1(^{st}) Jan, 2011.</td>
<td>Ensemble mean</td>
<td>STANDARD</td>
<td>Yes</td>
</tr>
<tr>
<td>(I_{Aexp})</td>
<td>50-member ensemble based on hindcasts recentered for 1(^{st}) Jan, 2011.</td>
<td>50-member ensemble</td>
<td>STANDARD</td>
<td>Yes</td>
</tr>
<tr>
<td>(I_{APexp})</td>
<td>50-member ensemble based on hindcasts recentered for 1(^{st}) Jan, 2011.</td>
<td>50-member ensemble</td>
<td>RANDOM across members (multi-model monthly OBCS were used)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

\(I_{exp}\) → Uncertainties accounted only from Initial conditions
\(I_{Aexp}\) → Uncertainties accounted from Initial conditions and atmospheric forcing
\(I_{APexp}\) → Uncertainties accounted from Initial conditions, atmospheric forcing, and model physics
Results highlighting the improvements in \textit{IAPexp} compared to other experiments
Anomaly correlations within Ensemble on 1st October, 2011

Too Noisy correlations in l_{exp} become more organized in IAP_{exp}.
Comparisons with in-situ SST and SSS observations during WHOI/KAUST cruise

Noisy and too anomalous
Slightly Noisy
Less Noisy and more organized
Subsurface Temperature comparisons during WHOI/KAUST cruise

Maximum Vertical Velocity in the ocean column along RS axis

Improved biases in the deep layers with IAPexp
SSH Comparisons with along-track observations

\(I\text{APexp}\) is better than interpolated level-4 product of AVISO.

Also, It represents the basin scale eddies better than any other experiment.
Conclusions

- The old “perturbing initial conditions alone” strategy yields minimal SST improvements and creates large imbalances within the ocean state.

- Admitting additional source of uncertainty, atmospheric forcing, yields substantial improvements.

- Admitting the uncertainties in model physics, atmospheric forcing, and initial conditions not only yield substantial improvements but obtains more dynamically balanced solutions. It improves basin scale eddy features too.