KG²B, a world-wide inter-laboratory benchmark of low permeability measurement and modelling

Christian David
and the KG²B Team

distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0)
The KG²B project

Objectives:

An international benchmark for estimating the permeability of a selected low permeability material by different laboratories (24) using different techniques (experiments, modelling)
The KG²B project

What’s the meaning of KG²B?

NO

Комитет государственной безопасности
Komitet Gossoudarstvennoi Bezopasnosti

K (permeability) for
Grimsel Granodiorite
Benchmark
The KG2B team

AMANN Alexandra / KROSS Bernhard, EMR group, Aachen Univ., Germany
BERTHE Guillaume / FLEURY Marc, IFPen, France
BILLIOTTE Joel, École des Mines de Paris, France
DAVID Christian / WASSERMANN Jérôme, Univ. Cergy-Pontoise, France
DAVY Catherine, École Centrale de Lille, France
DELAGE Pierre / BRAUN Philipp, ENPC, France
FORTIN Jérôme, ENS Paris, France
GRÉGOIRE David / PERRIER Laurent, UPPA, France
HU Qinhong, University of Texas, Arlington, USA
JAHNS Eberhard, Gesteinslabor, Germany
KLAYER Jop, Aachen University, Germany
LASSEUX Didier, I2M TREFLE, Bordeaux, France
LENORMAND Roland, Cydarex, France
LOCKNER David, USGS Menlo Park, USA
LOUIS Laurent / BOITNOTT Gregory, New England Research, VT, USA
MADONNA Claudio / AMANN Florian, ETH Zurich, Switzerland
MEREDITH Philip / BROWNING John, UCL Earth Sciences, UK
NONO Franck / LOGGIA Didier, Université Montpellier II, France
POLITO Peter, University of Texas, Austin, USA
REUSCHELE Thierry, EOST Strasbourg, France
RUTTER Ernie, Univ. Manchester, UK
SAROUT Joël / ESTEBAN Lionel, CSIRO, Perth, Australia
SELVADURAI Patrick, McGill University, Canada
VANORIO Tiziana / CLARK Anthony, Stanford University, USA
The KG²B project

Selected material: the Grimsel granodiorite

Swiss project for implementing deep geothermal energy in Switzerland: 10 meters deep borehole drilled in a tunnel at GTS

→ Two one-meter-long fresh cores were provided for KG²B
The KG²B project

Selected material: the Grimsel granodiorite

Figure 1.
- a) Cutting the core into small blocks;
- b) Measuring the P-wave velocity for quality check;
- c) P-wave velocity measurements in three orthogonal directions vs. distance from the tunnel.

The sample collection
The KG²B project
Management of the benchmark

Results spreadsheet

SIZE OF SAMPLE FOR PERM MEASUREMENT:	
PERMEABILITY METHOD:	
POSE FLUID USED:	
SATURATION PROCEDURE:	
CONFINING PRESSURE DURING THE TEST (in MPa):	
AVERAGE PORE PRESSURE DURING THE TEST (in MPa):	
POSE PRESSURE DIFFERENCE (in MPa)	
TEMPERATURE:	
DURATION OF MEASUREMENT:	
MEASURED PERMEABILITY (in m²):	
PRECISION OF MEASUREMENT (in m²):	
MAIN SOURCES OF ERROR:	
EXTRA MEASUREMENTS DONE:	a)

Website: https://labo.u-cergy.fr/~kggb/

Figure 3. a) Result spreadsheet that each participant was requested to complete; b) The KG²B wheel with updated information on the benchmark progress.

Imposed effective confining pressure: 5 MPa
The KG²B project

Expected outcome of the benchmark

• Comparison of the results for each method

• Comparison of the results from different methods

• Influence of experimental conditions (nature of fluid, stress and temperature control, sample size...)

• Accuracy of each technique

• Suggest « good practice » for low permeability measurements
The KG²B project

Benchmark « profile »

Figure 1. (a) Methods used in the benchmark and (b) techniques used for the experiments, global distribution (left) and distribution by working fluid type (right).
The KG²B project

« Bulk » results

Average permeability: 1.1 µD
The KG²B project

Influence of the pore fluid

Average Gas permeability \(\sim 2 \times \) (Average Liquid permeability)
The KG²B project

Influence of the sample size

More scatter for smaller samples

SIZE OF REV?
Influence of the testing method

- SST
- PLS
- OSC

Steady Flow Tests
Pc = 10 MPa
Py = 23 MPa

$q = 0.000185 DP + 7.0 \times 10^{-5}$

Pressure (bars)

Time (s)

Confining P = 111 bars

V_sp = 20.5 cc
V_down = 77.47 cc

Transient Behaviour

Pressure MPa

Time s

Transmissibility (μD)

STEADY-STATE METHOD

PULSE METHOD

OSC-PP

0.01

0.1

1

10

0.78 μD

1.27 μD

1.01 μD
Influence of the testing method

Measurements on:

- the same sample
- with the same fluid
- using different methods

→ the same order is found

\[k_{\text{SST}} < k_{\text{OSC}} < k_{\text{PLS}} \]
The KG²B project

Influence of the porosity

<table>
<thead>
<tr>
<th>porosity (%)</th>
<th>ALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of meas.</td>
<td>35</td>
</tr>
<tr>
<td>ϕ_{min}</td>
<td>0.17</td>
</tr>
<tr>
<td>ϕ_{max}</td>
<td>1.8</td>
</tr>
<tr>
<td>mean ϕ</td>
<td>0.77</td>
</tr>
<tr>
<td>standard deviation</td>
<td>0.36</td>
</tr>
<tr>
<td>median ϕ</td>
<td>0.70</td>
</tr>
<tr>
<td>interquartile range</td>
<td>0.45</td>
</tr>
</tbody>
</table>

$k(\mu D) = 1.5 [\phi(\%)]^2$

porosity variability is not enough to explain permeability variability
The KG²B project

Pressure dependence of permeability

Effective pressure law:
Biot coefficient $\alpha = 1$

$$k = k_0 \exp \left(-\gamma P_{\text{eff}}\right)$$
$$\gamma \approx 0.09 \text{ MPa}^{-1}$$

Exponential decrease of permeability with pressure
Microstructure analysis (BIB SEM)

Backscattered Electron image maps with pore space segmentation
Interpreted cracks are in red and pores in cyan
Microstructure analysis

Wood’s metal (in white) injection into cracks

Equivalent diameter distribution (in nm) for cracks and pores
Microstructure analysis

X ray microtomography
The KG²B project

Pore network modelling of permeability

MICP pore throat size distribution

<table>
<thead>
<tr>
<th>range (μm)</th>
<th>fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.01</td>
<td>0</td>
</tr>
<tr>
<td>0.01 - 0.05</td>
<td>5.92</td>
</tr>
<tr>
<td>0.05 - 0.1</td>
<td>8.31</td>
</tr>
<tr>
<td>0.1 - 1</td>
<td>69.04</td>
</tr>
<tr>
<td>1 - 10</td>
<td>9.13</td>
</tr>
<tr>
<td>10 - 36</td>
<td>7.60</td>
</tr>
</tbody>
</table>

coordination number $Z < 3$
The KG²B project

Permeability estimation from modelling

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>INPUT DATA</th>
<th>PERMEABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical model</td>
<td>3D array of orthogonal intersecting cracks</td>
<td>porosity, mean crack aperture</td>
<td>10 μD</td>
</tr>
<tr>
<td>Parallel fracture model (Zimmermann et al, 2005)</td>
<td>array of parallel fractures with the same aperture</td>
<td>linear density of fractures, mean aperture</td>
<td>28 μD</td>
</tr>
<tr>
<td>Percolation model (Katz & Thompson, 1986)</td>
<td>based on critical crack aperture at percolation</td>
<td>MICP volume vs. pressure data</td>
<td>1.1 μD</td>
</tr>
<tr>
<td>Free-fluid model (Coates et al, 1991)</td>
<td>permeability estimation from NMR relaxation time distr.</td>
<td>NMR T2 spectrum, porosity</td>
<td>1.3 - 5 μD</td>
</tr>
<tr>
<td>Pore network model (David, 1993)</td>
<td>3D network of pipes with elliptical cross-section</td>
<td>MICP pore size distribution, crack aspect ratio</td>
<td>100% bond: 28 μD, 53% bond: 2.5 μD, 38% bond: 0.25 μD</td>
</tr>
<tr>
<td>Effective medium model (Saroult et al, 2017)</td>
<td>random network of penny-shaped cracks</td>
<td>crack density, porosity, crack aperture</td>
<td>2.5 μD</td>
</tr>
</tbody>
</table>

PNM – pore network model

Effective medium model
PUZZLING RESULT

Possible explanations

- k_{liquid} is underestimated because of fluid-rock interactions
- k_{gas} is overestimated because of « insufficient » gas slippage correction
Is k_{gas} overestimated because of « insufficient » slippage correction?

$k_{\text{gas}} = k_{\infty}(1 + b/p_m)$

$K_{\text{n}} = b/4p_m$
The KG²B project

CONCLUSION

• Collaborative project involving 24 laboratories around the world, measuring or modelling the permeability of a low permeability crystalline rock with different techniques

• All the participants did the job very thoroughly, but not always in due time...

• Unexpected results on a possible « pore-fluid effect » were found

• Contribution to identify « good practice » for low permeability measurements

• Cross-checking between different labs when unexpected values were found helped in identifying technical problems in perm measurement
Example of cross-checking

<table>
<thead>
<tr>
<th>LAB#</th>
<th>LOCATION (m)</th>
<th>SAMPLE LENGTH (mm)</th>
<th>SAMPLE DIAMETER (mm)</th>
<th>FLUID</th>
<th>METHOD</th>
<th>TEMPERATURE (°C)</th>
<th>DURATION</th>
<th>PERM@5 MPa (μD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab#22</td>
<td>5.9</td>
<td>39</td>
<td>25.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>38</td>
<td>25.4</td>
<td>Action</td>
<td>PULSE</td>
<td>20 - 24</td>
<td>0.5h per step</td>
<td>34.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.9</td>
<td>25.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.0</td>
</tr>
</tbody>
</table>

These data are currently been checked because they fall out of the general trend.

Lab#01

Sample was sent to another lab

Lab#22

Found the problem (jacket leaks)

\[k = 0.79 \, \mu\text{D} \]
Finally KG²B was a challenging, exciting, useful and fun thing to do
KG²B, a collaborative benchmarking exercise for estimating the permeability of the Grimsel granodiorite – Part 1: measurements, pressure dependence and pore-fluid effects

https://doi:10.1093/gji/ggy304
KG2B, a collaborative benchmarking exercise for estimating the permeability of the Grimsel granodiorite—Part 2: modelling, microstructures and complementary data

https://doi:10.1093/gji/ggy305
THE KG²B TEAM

AMANN Alexandra / KROOSS Bernhard, Aachen University, Germany
BERTHE Guillaume / FLEURY Marc, IFPen, France
BILLIOTTE Joel, École des Mines de Paris, France
DAVID Christian / WASSERMANN Jérôme, Univ. Cergy-Pontoise, France
DAVY Catherine, Ecole Centrale de Lille, France
DELAGE Pierre / BRAUN Philipp, Ecole des Ponts, Paris, France
FORTIN Jérôme, ENS Paris, France
GRÉGOIRE David / PERRIER Laurent, Université Pau & Pays Adour, France
HU Qinhong, University of Texas, Arlington, USA
JAHNS Eberhard, Gesteinslabor, Germany
KLAVER Jop, Aachen University, Germany
LASSEUX Didier, I2M TREFLE, Bordeaux, France
LENORMAND Roland, Cydarex, France
LOCKNER David, USGS Menlo Park, USA
LOUIS Laurent / BOITNOTT Gregory, New England Research, Vermont, USA
MADONNA Claudio / AMANN Florian, ETH Zurich, Switzerland
MEREDITH Philip / BROWNING John, UCL Earth Sciences, UK
NONO Franck / LOGGIA Didier, Université Montpellier II, France
POLITO Peter, University of Texas, Austin, USA
REUSCHLE Thierry, EOST Strasbourg, France
RUTTER Ernie, Univ. Manchester, UK
SAROUT Joël / ESTEBAN Lionel, CSIRO, Perth, Australia
SELVADURAI Patrick, McGill University, Canada
VANORIO Tiziana / CLARK Anthony, Stanford University, USA