What changes when we use ambient noise recorded by fiber optics?

Eileen Martin^{1,2}, Nate Lindsey^{3,2}, Biondo Biondi³, Jonathan Ajo-Franklin^{4,2}, Tieyuan Zhu⁵

1. Virginia Tech 2. Lawrence Berkley Lab 3. Stanford University 4. Rice University 5. Pennsylvania State University

Part 1: If an array passively records a particular source, how should it look on different parts of the array?

Part 2: For any pair of receivers in the array, what should their cross-correlations look like?

Examples of Passively Recording Fiber Optic Arrays

Richmond Field Station (LBL/CRREL)

Stanford Fiber Optic Seismic Observatory

Penn State FORESEE Array

DAS Records Fiber's Axial Component of Strain Tensor

DAS = Distributed Acoustic Sensing

Longitudinal:

P-waves, Rayleigh waves

Transverse:

S-waves, Love waves

Geophone/Seismometer:

$$u_{\theta} = \cos(\theta) u_x + \sin(\theta) u_y$$

$$\epsilon_{\theta} = \cos^{2}(\theta) \frac{\partial u_{x}}{\partial x} + \cos(\theta) \sin(\theta) \left(\frac{\partial u_{x}}{\partial y} + \frac{\partial u_{y}}{\partial x} \right) + \sin^{2}(\theta) \frac{\partial u_{y}}{\partial y}$$

$$\Sigma_{\theta}(x,y,z,t) \quad = \quad \begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{\partial u_x}{\partial x} & \frac{1}{2} \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right) & \frac{\partial u_y}{\partial y} & \frac{1}{2} \left(\frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y} \right) \\ \frac{1}{2} \left(\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y} \right) & \frac{\partial u_z}{\partial z} \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rayleigh and Love Waves

Note: Sensors oriented along 0 degrees

Detected Signal Comparison: Gauge Effect

Rayleigh and Love Waves

if wavelength too small relative to gauge length

Note: Sensors oriented along 0 degrees

P, SV and SH Waves

Note: Sensors oriented along 0 degrees horizontal

Wave's vertical angle of incidence 22.5 degrees

P, SV and SH Waves

Wave's vertical angle of incidence 45 degrees

Note:

Sensors oriented along 0

degrees horizontal

P, SV and SH Waves

Note: Sensors oriented along 0 degrees horizontal

Wave's vertical angle of incidence 67.5 degrees

Nearby Earthquake Example

Magnitude 3.5 earthquake Piedmont, CA

Recorded on the Stanford Fiber Optic Seismic Observatory

S-wave Polarity Switches at Corners

Radial-Radial Cross-correlation Sensitivity

Rayleigh and Love Waves

Radial-Radial Cross-correlation Sensitivity

Rayleigh and Love Waves

Transverse-Transverse Cross-correlation Sensitivity

Rayleigh and Love Waves

based on Wapenaar et al, 2010

18

based on Wapenaar et al, 2010

19

How this affects real data: we get signals along Parallel lines, but not at the closest offsets

E.R. Martin and B.L. Biondi, "Ambient noise interferometry across two-dimensional DAS arrays," 2017, SEG Ann. Mtg. Expanded Abstracts, 2642-2646.

Effects at Fairbanks Thaw Test slide % Nate Lindsey

Lindsey et al., 2018 Fall AGU Meeting

Most (not all) parallel channel pairs are useful

More orthogonal channel pairs are useful

Reference:

E Martin, N Lindsey, J Ajo-Franklin, B Biondi, "Introduction to Interferometry of Fiber Optic Strain Measurements,"

Preprint on EarthArXiv at https://eartharxiv.org/s2tjd/

Instrumentation used for data acquisition:

OptaSense (Standford Fiber Optic Seismic Observatory)
Silixa (Penn State FORESEE, Fairbanks Permafrost, Richmond Field Station)

Support for Richmond Field Station and Fairbanks Permafrost Experiments:

SERDP Grant number RC-2437

Many collaborators led by PI Jonathan Ajo-Franklin and Co-PI Anna Wagner

Support for Stanford Fiber Optic Seismic Observatory:

Stanford Exploration Project Affiliates

Schlumberger Innovation Fellowship

DOE Computational Science Graduate Fellowship DE-FG02-97ER25308

Support for Penn State FORESEE Array:

Seed grant from Penn State Institutes of Energy and the Environment

Collaborators: Patrick Fox, Andy Nyblade, David Stensrud

Penn State IT

Virginia Tech Advanced Research Computing