Observed and Resolved Mountain Waves from the Surface to the Mesosphere Near the Drake Passage

Christopher G. Kruse
Climate and Global Dynamics Laboratory, NCAR
The ISSI Team
Organized by Joan Alexander

Affiliations:
1. NCAR
2. Northwest Research Associates
3. Forschungszentrum Juelich
4. University of Tokyo
5. UK Met Office
6. ECMWF
7. University of Bath
8. Ecole Polytechnique
9. Deutsches Zentrum fuer Luft- und Raumfahrt
10. University of Vigo
Objective 1:
To provide estimates of middle-atmosphere momentum flux and drag anchored to reality

Objective 2:
Use these estimates to improve/constrain MW drag parameterizations

Approach:
Use primarily satellite observations and multiple validated MW-resolving models to quantify MW MF and drag
Model Validation, Comparison

This Talk/Paper
Participating Models, Configurations

• Four MW-resolving models participating (soon five):
 • Limited Area - *WRF (dx=3km), Met Office UM (dx=3km)
 • Global – ECMWF IFS (dx~9km), German ICON (dx~13km)
 • All forced/initialized with 2010 operational IFS analyses

• 2° WACCM nudged to MERRA-2 with two OGWD params
 • Old param: isotropic, McFarlane type OGWD parameterization
 • New param: anisotropic, better SGS ridge heights
 • Strong nudging: 6 hour nudging time scale

• Performed deep ($z = 0 – 80 \text{ km}$) hind-casts of 8-19 Oct 2010 over the Drake Passage
 • Allows AIRS kernels to be contained within domains => model/AIRS comparison possible
 • Deep, realistic simulation a new capability of WRF
AIRS/Model Comparison

- Synthetic AIRS “data” generated from 4-D model fields (done by Lars Hoffmann)
 - Quite involved! Take into account:
 - Obs time
 - Viewing geometry
 - Radiative transfer of individual relevant channels to estimate radiation to sensor
AIRS/Model Brightness T' Comparison

Fig. 4. A good comparison, by eye.
FIG. 5. An ok comparison, by eye. Clear difference in waves as a function of resolution.
AIRS Swaths Used in Model Validation

• Observed T_b’ Contoured

• Areas contoured contained within all model domains

• 24 Overpasses used in MIP validation
Observed, Simulated Brightness T' Spectra

- Averaged over all overpasses (prev. slide)
- All models under-represent observed T_b'

Modeled, Overpass-Avg T_b’ spectra have same shapes as observed, except for observed scales influenced by noise

Amplitude error metrics averaged over all overpasses.

\[
\frac{\Delta T_b'}{\sigma_{T_b'}} = \text{spatial standard deviation of } T_b'
\]

\[
\Delta T_b' = T_{b', model} - T_{b', obs}
\]

<table>
<thead>
<tr>
<th>Waveband</th>
<th>WRF</th>
<th>UM</th>
<th>IFS</th>
<th>ICON</th>
</tr>
</thead>
<tbody>
<tr>
<td>15\mu m High</td>
<td>(\frac{\Delta T_b'}{\sigma_{T_b'}}) (%)</td>
<td>-18.63</td>
<td>-30.41</td>
<td>-32.30</td>
</tr>
<tr>
<td>15\mu m Low</td>
<td>(\frac{\Delta T_b'}{\sigma_{T_b'}}) (%)</td>
<td>-8.30</td>
<td>-23.06</td>
<td>-21.34</td>
</tr>
<tr>
<td>4.3\mu m</td>
<td>(\frac{\Delta T_b'}{\sigma_{T_b'}}) (%)</td>
<td>-3.94</td>
<td>-18.54</td>
<td>-39.13</td>
</tr>
<tr>
<td>4.3\mu m</td>
<td>(\frac{</td>
<td>\Delta T_b'</td>
<td>}{\sigma_{T_b'}}) (%)</td>
<td>16.52</td>
</tr>
</tbody>
</table>
U, MF\(_x\), and MWD\(_x\) Intercomparison
• Global models (IFS, ICON) under-represent middle-atmosphere MFs and GWDs

• Even with parameterized drags in IFS
Mini-MIP, Parameterization Comparison

- Previous and new MWD parameterizations evaluated in 2^0 WACCM strongly nudged to MERRA-2

- Previous param:
 - Mountain height from sub-grid-scale (SGS) variance
 - SGS terrain assumed isotropic

- New Param (Bacmeister et al., in prep):
 - Dominant ridges in SGS determine mountain heights
 - Ridge orientation accounted for
 - In latest version of CESM/CAM
High-Res Model, Parameterization x-Comparison

- WRF, UM dx ~ 3 km U, MF_x, and MWD_x over the Southern Andes

- Previous, New parameterized MW MF_x and drag
High-Res Model, Parameterization y-Comparison

- WRF, UM dx ~ 3 km, MF$_y$, and MWD$_y$ over NW/SE-oriented South Georgia

- Previous, New parameterized MW MF$_y$ and drag
CAM OGWD Param. Summary

- New anisotropic, SGS-ridge-based OGWD parameterization significant improvement over previous parameterization
- Still lots of room for improvement; too much drag at too low an altitude

Hypotheses:
- Source MW amplitudes too large?
 - True for Antarctic Peninsula, South Georgia
- Lateral MW propagation, spreading?
 - Eckermann et al. 2015, 2016
- Vertical/Temporal spreading?
 - Kruse and Smith 2018
Lateral Spreading Strongly Influences MW Breaking Levels

Normalized Max MW Amplitude

Param: $z_{\text{break}} \sim 40\text{km}$

Linear theory for isotropic mountain: $z_{\text{break}} \sim 80\text{km}$!
Summary

• State-of-the-Science models can reproduce observed middle-atmosphere mountain waves surprisingly well

• Mountain wave parameterization still needed in current O(10km) resolution NWP models
 • Resolved drags in dx~9km IFS, dx~13km ICON significantly lower than dx=3km WRF, UM
 • Significant MF, GWD contributions from 10-60 km scales that are poorly resolved/unresolved by O(10km) resolution models (last extra slide)

• New anisotropic, SGS-ridge-based mountain wave drag parameterization in latest version of CESM/CAM a significant improvement over previous isotropic, SGS-variance-based parameterization
 • Still, lots of room for improvement; incorporate lateral spreading to raise drag levels upward?
Thanks!

• Apologies for way too many slides

• Any comments/feedback appreciated! ckruse@ucar.edu
Orog Spectra MIP

(a) Southern Andes

(b) Southern Andes Slope PDF

(c) Antarctic Peninsula

(d) Antarctic Peninsula Slope PDF

(e) South Georgia

(f) South Georgia Slope PDF
10-m Wind MIP by Sub-Domain
Overview by Sub-Domain
MF_x, GWD_x
Cospectra MIP