Probabilistic damage scenarios from uncertain macroseismic data

E. Varini and R. Rotondi

Istituto di Matematica Applicata e Tecnologie Informatiche
Consiglio Nazionale delle Ricerche, Milano – Italy

EGU General Assembly: Sharing Geoscience Online
4-8 May 2020
Motivations

We consider the **beta-binomial model for macroseismic attenuation** (Rotondi et al., *BSSA*, 2009; Rotondi et al., *Bull. Earthquake Eng*, 2016), which:

- respects as far as possible the *ordinal nature of the intensity scale*,
- allows for the assumption of *spatial isotropy* or *anisotropy*,
- allows for the Bayesian treatment of uncertainties,
- is a probabilistic tool to produce macroseismic scenarios.

Critical point:

The application of the beta-binomial model typically requires rounding-up or -down the observed intensities to the nearest integer values (e.g. intensity VIII-IX must be set equal to VIII or IX).

Solution:

We propose an **extension of the beta-binomial model in order to include in the stochastic modelling the uncertainty in the assignment of the intensities.**
Original beta-binomial model of the intensity l_s at site J

circular bins are drawn around the epicenter (isotropy)

At a given bin j:

- $l_s = l_0 - \Delta l$ follows the **binomial distribution** $Binom(l_s \mid l_0, p_j)$:

 \[
 Pr\{l_s = i \mid l_0 = i_0, p_j\} = Binom\{i \mid i_0, p_j\} = \binom{i_0}{i} p_j^i (1 - p_j)^{i_0 - i}, \quad i \in \{0, 1, \ldots, i_0\}
 \]

- random variable $p_j \sim Beta$ distribution

 \[
 Beta(p_j; \alpha_j, \beta_j) = \frac{\Gamma(\alpha_j + \beta_j)}{\Gamma(\alpha_j)\Gamma(\beta_j)} \int_0^{p_j} x^{\alpha_j-1}(1 - x)^{\beta_j-1}dx
 \]

 to account for the variability in ground shaking

The **prior hyperparameters** α_j, β_j are assigned on the basis of the macroseismic fields belonging to the same class, but of different l_0.

New beta-binomial model of the intensity I_s at site J

circular bins are drawn around the epicenter (isotropy)

At a given bin j:

- $I_s = I_0 - \Delta I$ follows the **binomial distribution** $Binom(2I_s \mid 2I_0, \, p_j)$:

$$Pr \{I_s = i \mid I_0 = i_0, \, p_j\} = Binom \{2i \mid 2i_0, \, p_j\} = \binom{2i_0}{2i} p_j^{2i}(1 - p_j)^{2i_0 - 2i} \quad i \in \{0, 0.5, 1, 1.5 \ldots, I_0\}$$

- random variable $p_j \sim** Beta distribution**

$$Beta(p_j; \, \alpha_j, \, \beta_j) = \frac{\Gamma(\alpha_j + \beta_j)}{\Gamma(\alpha_j)\Gamma(\beta_j)} \int_0^{p_j} x^{\alpha_j-1}(1 - x)^{\beta_j-1} dx$$

to account for the variability in ground shaking

The **prior hyperparameters** α_j, β_j are assigned on the basis of the macroseismic fields belonging to the **same class, but of different** I_0.

Updating parameters in the Bayesian framework

Given all the earthquakes with epicentral intensity l_0 in a class, let N_j be the number of felt intensities D_j in the j-th bin.

Original beta-binomial model:

$$\alpha_j = \alpha_{j,0} + \sum_{n=1}^{N_j} i_s^{(n)} \quad \beta_j = \beta_{j,0} + \sum_{n=1}^{N_j} (l_0 - i_s^{(n)})$$

New beta-binomial model:

$$\alpha_j = \alpha_{j,0} + \sum_{n=1}^{N_j} 2i_s^{(n)} \quad \beta_j = \beta_{j,0} + \sum_{n=1}^{N_j} (2l_0 - 2i_s^{(n)})$$

We estimate the parameter p_j through its posterior mean

$$\hat{p}_j = E(p_j | D_j) = \frac{\alpha_j}{\alpha_j + \beta_j} \quad j = 1, \ldots, J$$
Beta-binomial model with smoothed $p = p(d)$

The estimates \hat{p}_j are smoothed by the inverse power function of the distance through the least squares method:

$$p(d) = \left(\frac{c_1}{c_1 + d} \right)^{c_2}$$

Smoothed binomial distribution at any distance d

$$Pr(I_s = i | I_0 = i_0, p(d)) = \binom{i_0}{i} p(d)^i [1 - p(d)]^{(i_0 - i)}$$

$$Pr(I_s = i | I_0 = i_0, p(d)) = \binom{2i_0}{2i} p(d)^{2i} [1 - p(d)]^{(2i_0 - 2i)}$$

The mode i_{smooth} of the smoothed binomial distribution is the predicted value of I_s
Learning set

Analysis of 441 macroseismic fields (MFs) of “good quality” from the Italian DBMI15 database:

- occurred since 1500,
- at least epicentral intensity V,
- at least 40 felt reports.
Hierarchical agglomerative clustering (R package `cluster`)

The learning set is first analyzed by the Ward’s hierarchical agglomerative clustering method. Four attenuation classes are identified.

class A
132 MFs

1919/06/29, Io X: observed

class B
192 MFs

1907/10/23, Io VIII–IX: observed

class C
82 MFs

1895/04/14, Io VIII–IX: observed

class D
35 MFs

1914/10/27, Io VII: observed
Smoothed posterior distribution of intensity I_s for **class A**

$$Pr \{ I_s = i \mid I_0 = i_0, \ p_{i_0}(d) \} = Binom \{ 2i \mid 2i_0, \ p_{i_0}(d) \}$$

where

$$p_{i_0}(d) = \left(\frac{c_1}{c_1 + d} \right)^{c_2}$$

<table>
<thead>
<tr>
<th>I_0</th>
<th>n. MFs</th>
<th>c_1</th>
<th>c_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>22</td>
<td>13846.42</td>
<td>219.98</td>
</tr>
<tr>
<td>V-VI</td>
<td>17</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VI</td>
<td>21</td>
<td>113.96</td>
<td>2.16</td>
</tr>
<tr>
<td>VI-VII</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VII</td>
<td>17</td>
<td>1989.44</td>
<td>29.01</td>
</tr>
<tr>
<td>VII-VIII</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VIII</td>
<td>8</td>
<td>9674.80</td>
<td>126.72</td>
</tr>
<tr>
<td>VIII-IX</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IX</td>
<td>14</td>
<td>3573.55</td>
<td>37.52</td>
</tr>
<tr>
<td>IX-X</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>X</td>
<td>10</td>
<td>27752.59</td>
<td>254.40</td>
</tr>
<tr>
<td>X-XI</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XI</td>
<td>4</td>
<td>36102.69</td>
<td>332.45</td>
</tr>
</tbody>
</table>

The number of MFs having uncertain epicentral intensity I_0 is sometimes very small or even null; it follows that the corresponding estimated coefficients c_1 and c_2 might be quite unreliable.

In order to obtain more reliable and stable estimates for uncertain epicentral intensity $I_0 = i_0$, its parameter $p_{i_0}(d)$ is chosen as follows:

$$p_{i_0}(d) = \frac{p_{\lceil i_0 \rceil}(d) + p_{\lfloor i_0 \rfloor}(d)}{2}$$
Probability of the intensity attenuation versus distance

Original model

New model

New model

Italy: Io V, class A

Italy: Io V, class A

Italy: Io V−VI, class A

Italy: Io VI, class A

Italy: Io VI−VII, class A

Italy: Io VII, class A

Italy: Io VII−VIII, class A

E. Varini, R. Rotondo
Probability of the intensity attenuation versus distance

Original model

New model

New model

Italy: Io VIII, class A

Italy: Io VIII, class A

Italy: Io VIII−IX, class A

Italy: Io IX, class A

Italy: Io IX−X, class A

Italy: Io X, class A

Italy: Io X−XI, class A
Probability of the intensity attenuation versus distance

Original model

New model

References

Zonno G., Rotondi R., and Brambilla C. (2009), Mining macroseismic fields to estimate the probability distribution of the intensity at site, BSSA, 99 (5), 2876-2892
