Geodetic determination of the gravitational potential difference for the optical lattice clock comparison in the Kanto region in Japan

Yoshiyuki Tanaka1, Yosuke Aoki2, and Ryuichi Nishiyama2

1Department of Earth and Planetary Science, University of Tokyo
2Earthquake Research Institute, University of Tokyo

Acknowledgements: Some geodetic data were provided by the Geospatial Information Authority of Japan and Kanagawa, Saitama and Tokyo Prefectures.

This study was supported by the JST project, “Space-time information platform with a cloud of optical lattice clocks”.

Background

- The gravitational red shift: time runs slower where the gravitational potential is lower.
 \[
 \frac{dt_{\text{high}}}{dt_{\text{low}}} = 1 + \frac{\Delta W}{c^2}, \quad \Delta W = g \Delta H
 \]
- Atomic clocks can detect a relative difference in the clock frequencies.
- Terrestrial clocks can be used as an altimeter.

<table>
<thead>
<tr>
<th>Region (e.g.)</th>
<th>Geology /network scale</th>
<th>Main purpose</th>
<th>Required uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>Stable continent</td>
<td>Unification of height reference systems</td>
<td>10^{-17} or better (cf leveling)</td>
</tr>
<tr>
<td>Japan</td>
<td>Unstable island arc</td>
<td>Crustal deformation monitoring</td>
<td>10^{-18} ≤24h (cf GNSS)</td>
</tr>
</tbody>
</table>

- Fiber-linked optical lattice clocks (OLCs) can achieve ~10^{-18} (corresponding to 1-cm height difference) uncertainty within several hours.
• Helmert orthometric height
• Geoid model by the Geospatial Information Authority of Japan (GSI) (Miyahara et al., 2014), SD=1.8 cm
• ~1300 cGNSS stations with average spacing of 20-25 km and the first-order leveling routes over 18,000 km for crustal deformation monitoring
• GNSS-leveling and gravimetric approaches were used for the longer- and shorter-wavelength determination, respectively.

Uncertainty of the geoid model (comparison with GNSS-leveling)
Crustal vertical velocity in Japan

Murakami and Ozawa (2004)
Recent progress regarding OLCs in Japan (selected)

- Chronometric heights obtained by OLCs were compared with geodetic survey results:
 - RIKEN-UTokyo: 5×10^{-18}, OLCs in laboratory environment (Takano et al., 2016)
 - Observatory of Tokyo Skytree: $1-5 \times 10^{-18}$, portable clock (Takamoto et al., 2020)
 - NTT-RIKEN-UTokyo: Fiber-linked clocks will become available soon.
 - 400-km fiber link toward the NE Japan (Mizusawa) under development

Takamoto et al. (2020)
Purpose of this study

• Our ultimate goal is to utilize OLCs to assist GNSS to monitor vertical deformation.

• In this study, we determine the static potential difference between the NTT and RIKEN clock sites to confirm the uncertainty of the portable clocks over a 100-km-scale fiber network, using geodetic observations.

• We discuss the error budget for the geodetic result.

Red: Expected uncertainty by using OLCs
• Faster positioning of vertical deformation than in GNSS (1 cm in several hours)
• Free from atmospheric noise
• It can separate apparent seasonal variations inherent in space geodetic techniques

Murakami and Ozawa (2004)
Method

Leveling-gravity method

(i) Direct integration of the potential increment

$$\Delta W_{AB} \approx \sum_i \bar{g}_{i,i+1} \Delta H_{i,i+1}$$

where a Bouguer plate with a uniform density (2.67 g/cm³) is assumed.

(ii) Computation based on the definition of Helmert orthometric height

$$W_{A/B} = \bar{g}_{A/B} H_{A/B}$$

$$\bar{g}_{A/B} \approx g_{A/B} + 0.0424 H_{A/B}$$

where a Bouguer plate with a uniform density (2.67 g/cm³) is assumed.

- We calculate $W_B - W_A$ by combining local leveling and gravity surveys near the clock sites (i) and the result of regional leveling surveys regularly measuring the Helmert height (ii).

- We correct for crustal movement on the route (ii) to adjust the epochs to 1/1/2020 with a least-square regression.

$\bar{g}_{i,i+1}$: average surface gravity between site i and i+1

$\Delta H_{i,i+1}$: observed leveling height between site i and i+1

\bar{g}_B: average gravity along the plumb line at site B

$H_{A,B}$: orthometric height

g_B: surface gravity at site B

Delva et al., (2019)
Hofmann-Wellenhof & Moritz (1967)
Leveling survey route

Study area

Orthometric Height (m)

Geoid height (m)

Local survey routes

NTT

~5 km

A27

10357

01-02

43-03

Ko (fix.)

Regional survey

(A&B) Regional survey

GSIGEO2011

RIKEN

NTT

01-02

A27

~1 km

RIKEN

Distance along the route [km]

NTT

RIKEN

~1 km

~5 km
Data

• Leveling data
 A. GSI’s crustal deformation monitoring data (1/a) [2013-2019]
 B. Municipal government data for monitoring groundwater movement (0.5-1/a) [2012-2019]
 C. Local (<10 km) survey near the clock sites [2020]
 • A-C are based on 1st order survey (uncertainty $\leq 2.5\sqrt{S}/\text{km}[\text{mm}]$, w temperature correction, no tidal corrections)

• Gravity data
 • Values on routes for A&B were calculated by the GSI, based on JGSN75 (The Japan Gravity Standardization Net 1975) (GSI, 1976). Uncertainty is 0.1 mGal (Kuroishi & Murakami, 1991).
 • Values on route for C were observed with a L-R G-type gravimeter (#705) and an absolute gravimeter FG5#109. Deviations from the linear drift after a tidal correction were ~5 microGals.
Examples of leveling & gravity survey

- Leveling survey inside the buildings: Feb. 4 and 18, 2020 (Showa holdings Co. Ltd.)
- Gravity measurement inside the buildings: Feb. 18 and Mar. 24, 2020

The mask is probably for preventing the bubble from being warmed by the breath.
Preliminary result

<table>
<thead>
<tr>
<th>Sites</th>
<th>01-02</th>
<th>RIKEN</th>
<th>A27</th>
<th>NTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Helmert height [m]</td>
<td>36.1236</td>
<td>35.9523(^a)</td>
<td>25.9868</td>
<td>99.2568(^b)</td>
</tr>
<tr>
<td>Potential [m(^2)/s(^2)]</td>
<td>353.936</td>
<td>352.257(^c)</td>
<td>254.616</td>
<td>972.499(^d)</td>
</tr>
</tbody>
</table>

*Height at the Tokyo Origin (Ko) is fixed at 22.9994 m
**Height at the highest point on the clock chamber
(exact location of the atom clouds: t.b.d.)

• \(dH\) (b-a) and \(dW\) (d-c) = \(63.3045 \pm 0.0114\) m, \(620.242 \pm 0.112\) m\(^2\)/s\(^2\)

• The biases associated with the origin of height and the potential value on the domestic geoid model vanish when taking the difference between the two sites.
The error budget (height)

- Allowable measurement error = $\pm 2.5\sqrt{S/\text{km}} \text{ [mm]} \cong \pm 25 \text{ mm}$

- Postseismic deformation of the 2011 Tohoku eq and secular plate motion
 - Leveling data over 4-6 yr time spans show average vertical velocity on the route $|V| < 2 \pm 1 \text{ mm/yr}$ (figure)

- Routes A&B: Fitting $y = a(t - 2020) + b$ against the repeated survey data from 2013-2018. The resultant correction for epochs $= -1.6 \pm 1.8 \text{ mm}@A27$ (NTT) and $0.3 \pm 1.3 \text{ mm}@01-02$ (RIKEN).

- Route C: Average closure of round-trip surveys/1 km x distance (2.3 mm)

- Tidal potential changes during each observation
 - OLC data are typically averaged over >1 day.
 - Kuroishi (2010) estimated the effects of the solid-Earth and ocean tides on four representative routes across Japan. The total error is 11 mm at the maximum for 100-km distance, comparable to the estimate of Vanicek (1980): 0.1 mm/km for the solid-Earth tides.

These lead to the maximum uncertainty of $\pm 11.4 \text{ mm}$ in dH and $9.8 \text{ m/s}^2 \times \pm 11.4 \text{ mm} = \pm 0.112 \text{ m}^2/\text{s}^2$.
The velocity obtained in our study probably reflects plate motion (faster subsidence toward South)
The error budget (gravity)

• Uncertainty from surface gravity (±0.1 mGal on routes A&B and ±0.005 mGal on route C)
 • The largest height difference between BMs adjacent to each other is 30 m.
 • The corresponding maximum height difference = 0.1 mGal/980 Gal x 30 m = 0.0031 mm
 • # of BMs ≈ 70. The maximum unc. = 0.0031 mm x 70 = 0.22 mm or 0.002 m²/s², which is negligible.

• Uncertainty due to the simple Bouguer correction (applied to sites A27 and 01-02)
 • \((\gamma + 2 \times 2\pi G \rho) H/2 = -0.0424\) mGal/m
 • When \(\rho = 1\) g cm⁻³, the factor = -0.1124 mGal/m. \((-0.1124+0.0424)\) mGal/m x 26/36 m = -1.8/-2.5 mGal.
 • The resultant max. unc. for the potential difference could be \(2.5 \times 36 \times 10^{-5} = 0.0009\) m²/s², which is negligible.

• The effect of the permanent tide should be theoretically restored in the analyses of gravity data, but it is also negligible (<0.1 mGal (Ekman, 1989)).

→ The uncertainty of the potential is dominated by the uncertainty of the height determination.
Summary and future work

• The 100-km-scale optical fiber network connecting RIKEN and NTT with portable OLCs with 10^{-18}-order uncertainties will become available soon in Japan.

• We estimated the potential difference between the two clock sites in advance, based on the leveling-gravity method.

• The maximum uncertainty for the potential difference originating from the height and gravity measurements was estimated as ± 1.1 cm in the unit of height. This uncertainty is dominated by the tidal effects on the inclination of the potential surface during measurements, which was only roughly estimated in this study.

• We will estimate the tidal effects through the observation route more realistically.

• Temporal changes in the potential due to groundwater variations \rightarrow GRACE-FO

• Effects of non-tidal variations in the sea-level on the inclination of the surface potential \rightarrow Numerical simulation

• We will carry out an independent confirmation by the GNSS-geoid method.