An open-path QCL-based instrument with sub-ppbv sensitivity for eddy covariance measurement of NH$_3$ fluxes

Yin Wang (PhD), Peng Kang (PhD), Yin Lu, Ting-Jung, Lin(PhD)
HealthyPhotonTechnology Co., Ltd., Ningbo, China

Kai Wang (PhD), Xunhua Zheng (PhD)
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Xiaojie Zhen
Jiangsu Tynoo Corp., Wuxi, China

Gang Liu (PhD)
Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China

Please contact us by yin.wang@healthyphoton.com kai.wang@mail.iap.ac.cn or let's chat on Friday, 8 May 2020, 10:45-12:00AM (CEST), @ EGU2020-6223, online session BG3.3
NH₃ emissions in China

- Ammonia (NH₃): a colorless gas with a pungent odor, very soluble in water, strong adsorption effect
 - a gas-phase precursor to PM2.5
 - form fine particle NH₄⁺ aerosols

NH₃ source contributions in China (2012)

- **Livestock**: 52%
- **Fertilizer**: 29%
- **Biomass burning**: 4%
- **Agricultural soil**: 3%
- **Compost**: 3%
- **N-fixing crops**: 2%
- **Waste disposal**: 1%
- **Traffic**: 1%
- **Human excrement**: 1%
- **Chemical industry**: 0%
- **Ammonia escape**: 0%

Motivation

- **Objective**: To explore the impact of agricultural fertilization on NH$_3$ emissions/depositions at different ecosystems

- **Methodology**: Eddy covariance technique based on a novel QCL-based open-path trace NH$_3$ analyzer

- **Requirements**:
 - **High sensitivity** and **high speed** for eddy covariance
 - **Large dynamic range** (before & after fertilization)
 - **Avoid sampling error** due to NH$_3$ adsorption nature
 - **Low power**
 - Remote sites without readily electrical power
 - Electrical safety problems in the wet rice paddy
Solution: an open-path QCL based NH$_3$ analyzer

- **Strong mid-infrared** absorber --> high sensitivity
- Distinct absorption lines --> high selectivity
- No consumables --> Unattended continuous monitoring
- **Open-path** --> Fast response, no sampling delay/loss
- No sampling pump and pretreatment --> low power

Eddy covariance system

• NH₃ flux system: NH₃ analyzer, Campbell Scientific® CSAT3 + CR6, LICOR® LI-7500

• **Low-power**: Supported by 24VDC solar panels. Safe in wet rice paddy.
Flux calculation and WPL correction

\[q_c = q_{cm} \kappa \]

\[\kappa = \kappa(T, P_c) + \frac{\partial \kappa(T, P_c)}{\partial T} \delta T + \frac{\partial \kappa(T, P_c)}{\partial P_c} \delta P_c + \ldots \]

\[P_e = P(1 + \alpha_v x_v) \]

\[F_e = A \left(w' q'_{cm} + B \frac{q_{cm}}{q_d} w' q_v + C \left(1 + \mu \sigma \right) \frac{q_{cm}}{T} w' T' \right) \]

where

\[A = \kappa \]

\[B = \left[1 + \left(1 - \frac{1}{\alpha_v} \right) \frac{\kappa(P_c)}{\kappa} \right] \]

\[C = \left[1 + \left(1 - x_v \right) \left(1 - \frac{\kappa(P_c)}{\kappa} \right) + x_v \left(B - 1 \right) \right] \]

3.48 for NH\textsubscript{3} and \(\alpha_v = 2.48 \)

k(T,P) calculated for NH\textsubscript{3} lines @1102.3cm-1

Addapted from:
• G. Burba et. al., Accounting For Spectroscopic Effects in Eddy Covariance Measurements of Methane Flux. LICOR INC.
Field deployment 1: rice paddy (Sep. 2019)

Rice paddy at Yangzhou, Jiangsu Province

Site Location:
N32°35'51'', E119°42'22''
YangZhou, JiangSu

Duck Farm
50m
NH\textsubscript{3} mass density along with the wind direction

- NH\textsubscript{3} (mg m-3)

Duck farm 100~200m away
NH₃ analyzer performance and challenges

Optical signal reduction due to dust accumulate on mirrors

Allan Deviation analysis following Werle et al. (1993)

NH₃ concentration vs. Optical signal strength
NH$_3$ deposition due to duck farm close by

- Detection limit for half-hourly fluxes analysis following:
 \[
 W. K., \text{et. al.}, (2020)
 \]

- The contribution of negative flux (deposition) mainly comes from high frequency
 \[
 F_{\text{det,NH}_3} = \frac{2\sigma_w \times 2\sigma_{\text{C,NH}_3}}{\sqrt{fT}} \approx 17 \text{ ug N m}^{-2} \text{ h}^{-1}
 \]
 (95% confidence interval)
Continuous flux data

![Graph showing NH₃ Flux with data points for F_{NH₃} and lag time between wind and NH₃ concentration for each half-hourly period.]
Summary of field deployment 1

• Achievements:
 • A QCL based open-path analyzer has been deployed for the first time to measure atmospheric NH$_3$ with $\text{~0.53 ppbv sensitivity at a 10Hz sampling rate.}$
 • The standalone system (no PC required) consumes only ~50 Watts.
 • An eddy covariance system equipped with this instrument showed a detection limit of $\text{~17 ug N m}^{-2} \text{h}^{-1}$ for half-hourly NH$_3$ fluxes from a rice paddy.

• Challenges:
 • High-frequency noise needs to be suppressed for higher flux detection sensitivity.
 • Automatic mirror cleaning at high dust area is needed to avoid signal attenuation.
Field deployment 2: dry rice paddy (Apr. 2020)

- Updated eddy covariance system: improving noise suppression for higher flux sensitivity

rice field at Ningbo, Zhejiang Province
Upgraded system performance

- NH\textsubscript{3} detection sensitivity was improved to ~ 0.11 ppbv at a 10Hz sampling rate.
- The eddy covariance system showed an improved half-hourly flux detection limit of ~ 3.6 ug N m-2 h-1.

$$F_{\text{det,NH}_3} = \frac{2\sigma_w \times 2\sigma_{C,NH_3}}{\sqrt{fT}} \approx 1.0 \text{ ng N m}^{-2} \text{ s}^{-1}$$

Wang K., et. al., (2020)
An experiment with application of ammonium bicarbonate on a rice paddy during the fallow season

Half-hourly NH$_3$ fluxes before and after fertilizer application

The 3rd day after fertilization, diurnal pattern can be observed clearly from night to midday
Spectra and Co-spectra

Spectra of w and T_s, CO_2, H_2O, NH_3

Co-spectra of w and T_s, CO_2, H_2O, NH_3
Conclusions & future works

Conclusion:
• An eddy covariance system equipped with an open-path QCL-based NH$_3$ analyzer (model: HT8700, HealthyPhoton Co. Ltd., Ningbo, China) was deployed to measure the NH$_3$ fluxes from two subtropical rice paddies.
• The system showed a detection limit of ~ 3.6 ug N m$^{-2}$ h$^{-1}$ (95% confidence), for half-hourly fluxes, being capable of sensitively capture the NH$_3$ emission/deposition flux.
• NH$_3$ fluxes showed a diurnal pattern with local NH$_3$ emissions from morning to midday.

Future works:
• This eddy covariance system will be deployed and tested in various types of ecosystem under different environmental conditions to ensure its long-term stability and reliability.
• We expect this system to be a powerful tool to measure the NH$_3$ emissions of all nitrogen fertilizer events, and the atmospheric NH$_3$ deposition in urban areas, and areas affected by agricultural and animal husbandry activities.
Acknowledgement

- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
- Jiangsu Tynoo Corporation, Wuxi, Jiangsu
- Joe, Zhou
- Ningbo Innovation Fund
- TusStar

Thank you for watching! Please contact us by yin.wang@healthyphoton.com or kai.wang@mail.iap.ac.cn or let's chat on Friday, 8 May 2020, 10:45-12:00AM (CEST), @ EGU2020-6223, online session BG3.3

EGU2020 Online Sharing:
Y. Wang et. al., EGU2020-6223
© Authors. All rights reserved