Recent observations of magnetic holes (cavities): from MHD to kinetic scale

Q.Q. Shi (Quanqi Shi), S.T. Yao, J. Liu, Anmin Tian, A. Degeling, S.C. Bai
Institute of Space Sciences, Shandong University, Weihai, China
School of Earth and Space Sciences, Peking University, Beijing, China
X. G. Wang
Department of Physics, Harbin Institute of Technology, Harbin, China
R.L. Guo, Z. H. Yao
Institute of Geology and Geophysics, Chinese Academy of Sciences, China
I. J. Rae
Mullard Space Science Laboratory, UCL, UK
sqq@sdu.edu.cn
Magnetic hole: observable magnetic field decrease in a short time span (magnetic cavity, dip, depression...)

- **magnetic holes in the Cusp (large scale)**
 - [Shi +, 2009a, JGR]

- **magnetic holes in the Cusp (large scale)**
 - [Xiao+, 2010, AG; Xiao+, 2014, SP]

- **magnetic holes in the sheath (large scale)**
 - [Yao+, 2017, 2019, JGR; Yao+, 2019, GRL; Liu+, 2019]

- **magnetic holes in the tail (small scale)**
 - [Sun +, 2012, AG; Ji +, 2014, JGR; Yao+, 2016, JGR]
‘Linear’ magnetic hole

- **Linear hole**: field direction does not change much across the structure (e.g., Turner et al., 1977; Winterhalter et al., 1994). Normally no more than 15° (Zhang et al., 2008; Xiao et al., 2010).
Observations of magnetic holes

1) SW (e.g., Turner et al., 1977; Winterhalter et al., 1994; Russell et al., 2008; Zhang et al., 2008; Yao et al., 2008);

2) Magnetosheath of the Earth and other planets (e.g., Tsurutani et al., 1982; Lucek et al., 1999; Soucek et al., 2008);

3) CME sheath behind interplanetary shocks (e.g., Liu et al., 2007);

4) Cometary environments (Russell et al., 1987; Plaschke et al., 2018);

5) Earth's magnetosphere (Rae et al., 2007–drift mirror);

6) Earth's cusp (Shi et al., 2009);
 -> in large scale (~10s-100s of \(\rho_i \))

7) Tail plasma sheet (Ge et al., 2011; Sun et al., 2012);
 -> in small scale (< \(\rho_i \))
Formation for **large scale** MHs

1. **Mirror instability**: High β, anisotropic plasmas (e.g. Hasegawa., 1969, 1975):

 $$ R = \frac{T_\perp/T_\parallel}{1 + 1/\beta_\perp} > 1 $$

2. **Soliton approach**: ’dark’ soliton, ‘bright’ soliton (e.g. Baumgärtel., 1999; …; Ji et al, 2016)

3. Phase-steepened Alfvén waves (e.g. Tsurutani et al., 2002a, b)

4. Wave-wave interaction (e.g. Tsubouchi and Matsumoto., 2005; Tsubouchi. 2009, 2012).

Mirror mode: field direction change little; N, B antiphase; frozen in background plasmas
Mirror mode may carry some information of corona heating (Russell et al., 2008)

Linear MHs in the near earth sw (Xiao et al., 2010, AG; Xiao et al., 2014, SP)

Rotational ellipsoid; ratio of scales along and across the magnetic field ~1.93:1.

Compared to the results in 0.72 AU (Zhang et al., 2008), the occurrence rate and geometrical shape in 1 AU change little from Venus to the earth → fully developed before 0.72 AU
Particle distribution in large scale mirror mode

Physical Mechanism of **Linear** Instability (Southwood and Kivelson, 1993)

\[\Delta W = \Delta W_\perp = \mu \Delta B = W \sin^2 \theta \left(\frac{\Delta B}{B_0} \right) \]

- **Betatron acceleration**
- **Betatron deceleration**

The Mechanism of **Nonlinear** Saturation (Kivelson and Southwood, 1996)

When the mirror waves are growing:

- Particles trapped near the center lose perpendicular energy and total energy --both betatron deceleration and Fermi deceleration.

Betatron deceleration in the center of the MHs - > perp flux decrease in the center of the hole.
Soucek and Escoubet [2011] explained the ion distributions using theory by Southwood and Kivelson [1993] and Kivelson and Southwood [1996]:

- For the depletion of ions at $\alpha \approx 90^\circ$ inside the magnetic troughs/dips, they experience the field weaken and thus the Betatron deceleration.

How about the electron distribution?
1) many electrons are trapped in the magnetic trough.

2) For trapped electrons, the electron flux with pitch angle close to 90° at the minimum magnetic field areas is lower, which displays a “donut” distribution.

\[
\theta = \arcsin \sqrt{\frac{B}{B_{\text{max}}}}
\]

\[
\theta = \arcsin \sqrt{\frac{B}{B_{\text{average}}}}
\]

How will these sheath structures (holes+peaks) propagate and evolve??
Large scale MH evolution: mirror mode
[e.g., Bavassano-Cattaneo et al., 1998; Joy et al., 2006; Soucek et al., 2008; Genot et al., 2009],

Qperp Shock \rightarrow sheath \rightarrow magnetopause \rightarrow cusp?

Quasi-sin peaks & dips dips
Unstable stable
(Tperp > Tpara, high beta)

Sheath

Near the magnetopause

[Sheath]

Peaks & dips/holes

[Genot et al., 2009]
The angle between the two boundaries is only $\sim 20^\circ$. The velocities of the two boundaries are almost parallel to each other.

Spatial structure!
Methods

- calculating the eigen directions of the field spatial variations
 \(\Rightarrow \) D-based coordinate system

 \(\frac{(\partial \vec{B} / \partial n)^2}{\partial n} \) maximum/minimum values
 \(\Rightarrow \) eigen directions

- Calculating the spatial and temporal variation \(\Rightarrow \) reference frame moving with the field

\[
\frac{\partial \vec{B}}{\partial t} + \vec{V}_{str} \cdot \nabla \vec{B} = 0
\]

SPEDAS GUI of the methods

Test of Shi et al. method to infer the magnetic reconnection geometry from spacecraft data: MHD simulation with guide field and antiparallel kinetic simulation

Received 27 April 2012; revised 28 June 2012; accepted 7 July 2012; published 6 September 2012.
Method examples

1-D CS

2-D flux rope
For methods, please refer to this review:

[Link to the review article]

Abstract
In the analysis of in-situ space plasma and field data, an establishment of the coordinate system and the frame of reference, helps us greatly simplify a given problem and provides the framework that enables a clear understanding of physical processes by ordering the experimental data. For example, one of the most important tasks of space data analysis is to compare the data with simulations and theory, which is facilitated by an appropriate choice of coordinate system and reference frame. While in simulations and theoretical work the establishment of the coordinate system (generally based on the dimensionality or dimension number of the field quantities being studied) and the reference frame (normally moving with the structure of interest) is often straightforward, in space data analysis these are not defined a priori, and need to be deduced from an analysis of the data itself. Although various ways of building a dimensionality-based (D-based) coordinate system (i.e., one that takes account of the dimensionality, e.g., 1-D, 2-D, or 3-D, of the observed system/field), and a reference frame moving along with the structure have been used in space plasma data analysis for several decades, in recent years some noteworthy approaches have been proposed. In this paper, we will review the past and recent approaches in space data analysis for the determination of a structure’s dimensionality and the building of D-based coordinate
In the cusp the plasma beta is lower than that in the sheath; the temperature anisotropy is not very strong: the mirror instability could hardly be generated locally.

Open field geometry of the cusp + mirror frozen in the plasmas → sheath mirror structures in the nonlinear stage (MHs) entering the cusp

Q⊥ Shock → sheath → magnetopause → Cusp
 Quasi-sin peaks&dips dips dips

(Shi et al., 2009, JGR)
Another way of evolution: **shrinking vs expansion**

Yao et al., 2020, JGR: sheath MHs can be **contracted** while propagating

How small will it be contracted?

Tools downloading:
http://themis.ssl.berkeley.edu/socware/bleeding_edge/spdsw_latest.zip
Kinetic scale magnetic hole in the sheath (Yao et al., 2017)

significant effect on the electron distributions:

• the flux of the trapped electrons are substantially increased at high energy;
• the flux of lower energy electrons are decreased.

Also see Huang et al., 2017, ApJ: Electron vortex magnetic hole (EVMH) – coherent structures in turbulence
similar to the small MHs in the tail

Ge et al. [2011]: THEMIS observation of MHs (small scale) between two depolarization fronts – mirror?

Adapted from Ge et al., [2011]
Double Star + Cluster observation:
small scale MHs in the tail plasma sheet

- [Sun et al. 2012, AG]:
 1. $L < \rho_i$
 2. Electron flux increased around 90° in the center
 3. From Cluster (mid-tail) to TC-1 (near earth), MHs deeper.

- EMHD soliton approach & observations
 [Ji et al., 2014, JGR; Li et al., 2016, JGR]

- Tail small MHs can propagate in the background plasmas - EMHD soliton
 [Yao et al., 2016, JGR]
Sheath small scale MHs – structure and evolution?

3-D magnetic bottle

[Liu et al., 2019, NC]: Sounding technique
1. Rounded cross section
2. Shrinking (data from the 1st and 2nd half)
3. Magnetic field decrease in the center

(An analytical model: Zhou et al., 2019, in preparation)

Shrinkage + deepening (Yao et al., 2017):
In line with EMHD soliton (Ji et al., 2014; Li et al., 2017) prediction.

Sounding:
Electron as a detector - see where the boundary is.
MH shrinkage + magnetic field decrease in the center → induced electric field → particle non-adiabatic acceleration

The higher energy electrons are accelerated, while the lower energy electrons are decelerated inside the shrinking MH

Test particle simulation for two electrons
The significant effect on the electron distributions:

- the flux of the trapped electrons are substantially **increased at high energy**;
- the flux of **lower energy electrons are decreased**.

MHs (magnetic bottle) are generated near the Bow Shock. While propagating toward the MP, due to the pressure increase, MHs will shrink+deepen -> induced E- high energy particles accelerated & lower energy particles decelerated --non-adiabetic!
List of several other related observations

- Magnetic peaks with electron vortex (Yao et al. 2018a, GRL)

• Electron scale MP in the magnetosheath: ~7 electron gyroradii and a duration of ~0.18 s.
• Electron vortex is found perpendicular to the field lines

B-field bipolar: Magnetic bottle or Flux rope?

- The angle between the s/c trajectory and the field in M-N plane to determine!
List of several other related observations

Electron mirror (Yao et al., 2019, ApJL) – if we do not need shrinkage

- Small scale \(<\rho_i\) - No ion response
- Electron mirror threshold exceeded
- Structure non-propagating (4.2±8.6 km s\(^{-1}\)) in the plasma flow frame.

\[
R_e = \frac{T_{e\perp}}{T_{e\parallel}} \frac{1 + 1/\beta_{e\perp}}{1 + 1/\beta_{e\perp}} > 1
\]
List of several other related observations

Waves in kinetic-scale MHs (Yao et al., 2019, GRL)

Yao et al. [2019] reported observations of **whistler mode** waves, **electrostatic solitary** waves, and **electron cyclotron** waves inside KSMHs in the magnetosheath.
Summary & discussion

- Small structure (小), complicated physical processes: Particle trapping/acceleration/deceleration- adiabetic/non-adiabetic; electron vortex; energy conversion; various kind of waves.
- Contribution to turbulent energy dissipation?

Thanks!

See more details in: D2611 EGU2020-4394 & D2627 EGU2020-2719 of this Session

sqq@sdu.edu.cn
Related papers

