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Ecohydrological separation has been observed across climates and %
biomes, and at a fundamental level suggests that water in mobile versus —_—
Immobile domains may resist mixing over varying periods of time; LL
however little mechanistic evidence exists to explain this separation at a o Saturation Signature = ® o C_U
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water worlds scenario (i.e., physical separation between mobile and | o _ Y O
Immobile water pools) using a simple i1sotope mixing technique. o | O o
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We constructed 60 cm soil columns (20 cm-ID PVC) containing either = T Mo o0 ) T
sieved soll material (low soil structure), subsoll structure (intact B N S th 8
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Columns were subjected to 3 rain storms of varying rainfall intensity o o N 0 2.5 S 11
('“2_-5 cmh -, ~5.cmh -, and ~11cm h ) whose stable isotope signatures T Figure 2. middle left) Rainfall input Figure 3. Average preferential flow estimates
oscillated around known baseline values. ¢ o isotopic signatures, and bottom left) soil across the three simulated rain events. The
. matrix water signatures with saturation separation of single domain (low structure) with
Leachate and soil matrix water (via direct vapor equilibration) were i _ values (gra_ly dashed_ lines), and with 0 and dual domain systems (intact and no-exchanqg |
- . . © = 100% mixing scenrios expressed as treatments) denotes a two water world scenario;
_measu_red_perlodlcally throughO_Ut_the eXpe“mer_]t and analyzed for their dashed lines with colors corresponding to however non-conservative behavior of oxygen
Isotopic signatures using off-axis integrated cavity output spectroscopy 0 1 2 > 0 1 2 > treatments. isotopes limited our resolution under moderate

rainfall intensities
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Qompe signature [5] lzf‘M:(t>§0ilfatfizwatef ~ . — * \We present experimental evidence showing the degree of preferential flow required to produce hydrological domain separation (mobile vs. immobile flow) using stable
soiopesnee r u;i _ isotopes of water. Contrary to the two water worlds hypothesis, mixing between preferential flow paths and soil matrix water appears to prevail under low-moderate rainfall
frr(t) = Ce®)= Cmr () z " — . I Intensity. Rather, limiting exchange between macropores (no-exchange treatment, Figure 3) reduced preferential flow under intense rainfall. Additionally, non-conservative
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CPIF(l')— CmF(t)

L for(t) = fraction of preferential flow isotope signature [5] (= rain o) Event that was fractionated by soils.




