Two pathways of decadal ENSO variability in modulating long-term global carbon cycle

So-Won Park¹, Jin-Soo Kim²,³, Jong-Seong Kug¹, Malte F. Stuecker⁴,⁵, In-Won Kim⁴,⁵, Mathew Williams²,³

¹Division of Environmental Science and Engineering, POSTECH, Pohang, South Korea
²School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
³National Centre for Earth Observation, University of Edinburgh, Edinburgh, United Kingdom
⁴Center for Climate Physics, Institute for Basic Science (IBS), Busan, South Korea
⁵Pusan National University, Busan, South Korea

Introduction

The El Niño–Southern Oscillation (ENSO) drives interannual global carbon cycle variability by affecting terrestrial ecosystem via atmospheric teleconnection. The ENSO-like SST pattern has significant decadal variability and the ENSO characteristic changes on decadal time scales. It is expected from the strong relation between ENSO and global carbon cycle on interannual timescales that such decadal behaviors of ENSO naturally modulate the global carbon cycle on decadal timescales.

Study Purpose: how and how much decadal ENSO variability affects global carbon cycle on decadal time scales?
Data: CESM1-LE, Long-term fully coupled control simulation under pre-industrial condition

Pathway 1: Decadal tropical Pacific SST variability

On interannual time scale

[El Nino years]
Warm & Dry
Reduced net productivity
Carbon release to ATM

[La Nina years]
Cold & Wet
Increased net productivity
Carbon uptake from ATM

Pathway 2: ENSO asymmetry & decadal ENSO amplitude modulation

Asymmetric terrestrial carbon flux due to ENSO asymmetry

Residual NBP effects can be reflected to the mean state.

Summary

There are two pathways, which can explain about 36% of the decadal variations in global carbon cycle.
First, climate change induced by decadal ENSO-like SST variability regulate terrestrial productivity on decadal time scale.
Second, decadal changes in asymmetric terrestrial biosphere’s response to ENSO, resulted from decadal ENSO amplitude modulation, generate decadal variability of carbon flux.