

Development of Customized Variable-Resolution CPAS for

1		
		CPAS 128-
	Average:	56.8 % time sa
S	Speedup	
	1.91x	'microphysic
		'atm_advance
	2.01x	'atm_compute
	2.45x	'physics dr
B.	Perforn	nance Evaluati
₽	Simulat	ion results we
	Enviror	imental Predic
Ð		
Ð	Taylor's	mental Predic skill score for
•	Taylor's coverin	mental Predic
•	Taylor's coverin All fore	mental Predic s skill score for g 3 km refiner
•	Taylor's coverin All fore	mental Predic skill score for g 3 km refiner cast variables
•	Taylor's coverin All fore non-HT	imental Predic s skill score for g 3 km refiner cast variables S for both me
	Taylor's coverin All fore non-HT	mental Predic s skill score for g 3 km refiner cast variables S for both mes Passage of
•	Taylor's coverin All fore	mental Predi s skill score fo g 3 km refine cast variables

- by traditional Lloyd-based methods.

quality metrics. In general, mesh generated by CPAS' have better quality than those generated

Promising model performance along with remarkable speed-up using HTS illustrate the validity and feasibility of high resolution local/regional forecast in daily operational manner.

Study of modelling accuracy using CPAS' mesh can be found in Lui *et al.* (2019). It analyzed the simulated tracks and intensities of western north Pacific tropical cyclone using CPAS' customized variable-resolution meshes with comparison to the Weather Research and Forecasting (WRF) model.

*Lui et al. (2019) used JIGSAW-GEO-based mesh generation algorithm in an early version of CPAS; further modeling result analysis will be carried out using the current OLAM-based meshes.

Poster Presentation (Lui *et al.* 2019)