Quantitative texture analysis by neutron diffraction in deformed crystalline aggregates: Contín Shear Zone, Morais Complex, N Portugal.

Durán Oreja, Manuela¹, Malecki, Jeremie¹ and Gómez Barreiro, Juan¹
(1) Departamento de Geología, Universidad de Salamanca, Spain (manudur@usal.es)

Abstract
Two samples of mylonitic ultramafic orthogneisses collected along the Contín shear zone were investigated for crystal preferred orientation and seismic anisotropy. Neutron diffraction data obtained at the D1B beamline at ILL (Institut Laue-Langevin, Grenoble) were analyzed with the Rietveld method as implemented in the code MAUD, to obtain the orientation distribution functions (ODF) of the principal phases (quartz, K-feldspar, plagioclase, phlogopite, muscovite and biotite). Texture and microstructure are compatible with the plastic deformation of the aggregates under medium to low-temperature conditions. Kinear analysis supports a top-to-the SE sense of shear, suggesting a thrust character. Using preferred orientation data and single crystal elastic tensors, P and S-waves velocities and elastic anisotropy have been calculated. We have explored the role of several factors controlling the elastic properties of rocks, particularly the role of strain state and mineral changes in a shear zone. Those factors have a direct impact on the medium impedance and consequently on the interphase reflectivity. P-wave velocities, S-wave splitting and anisotropy increase with muscovite content. Seismic anisotropy is linked with the texture symmetry, which can result in large deviations between actual anisotropy and that measured along Cartesian XYZ sample directions (lineation/foliation reference frame). This is significant for the prediction and interpretation of seismic data.

Geological setting and sample location

Methods and results

1. Microstructural analysis

2. Diffraction data processing

A true, MAUD-derived, real diffraction pattern from a peralkaline orthogneiss. 2D graph for checking the fit between the actual experiment and the theoretical model implemented in MAUD.

3. Texture analysis

Orientation Distribution Function (ODF) for MIR55 as images of pole compositions.

4. Analysis of elastic properties and anisotropy in real rocks

Sample MIR55
Models made with BEARTEX (Wenk et al. 1998; Mainprice, 1990; Mainprice and Humbert, 1994).

5. Analysis of reflecting in anisotropic rock recipes

Increasing the eccentricity of rock at the expense of potassium feldspar and biotite, the increase in reflectivity is linked to the intensity and symmetry. The transition from a point source to a line source and the spatial distribution of anisotropy and polarization directions are very sensitive to such interferences, which can misinterpret the deformative conditions of the rock in depth.

Conclusions

The textures developed in the Contín shear zone have been investigated, both in calcalkaline and peralkaline felsic rocks. This shear zone is relevant because it brings rocks with evidence of HP metamorphism in contact with low-grade rocks without traces of this metamorphism. The results of the kinematic study allow us to conclude that the Contín shear zone is a thrust with a sense of movement from the roof block towards the SE.

The deformation conditions in such thrusts have been constrained by microstructural observations and the quantitative calculation of textures by neutron diffraction. Both the textures and microstructures of the different mineral phases indicate that the deformation occurred between 300 and 500°C, in the upper part of the Green Schist Facies. These deductions are compatible with the thermobarometric calculations made in the unit.

Quartz textures are compatible with the combined activity of two sliding systems (0001) <a> and {r}{z}<a>. It is not possible to rule out the activity of dislocations in feldspars, but considering the textures and microstructural evidences, it is proposed that if there is intracrystalline sliding, this must have been assisted by diffusion phenomena, giving rise to a change in the shape of the crystals due to their preferential growth.

The calculation of the velocities of propagation of seismic waves in mylonites is consistent with observations made on similar felsic rocks that are located in the middle and lower crust. In particular, the absolute values of Vp, Vs, and dR are strongly conditioned by the dominant mineral phase (quartz). However, interaction with the response of the rest of the phases can lead to constructive/destructive interference, blurring the overall signal of the rock. Moreover, the spatial distribution of anisotropy and polarization directions are very sensitive to such interferences, which can misinterpret the deformative conditions of the rock in depth.

The reflectivity of a shear zone increases as the content of micas in it rises. The process of filonitization, which leads to a stabilization of the deformation zones in time, is therefore traceable as long as it is permeable in the crust.

The reflectivity of a shear zone increases as the content of micas in it rises. The process of filonitization, which leads to a stabilization of the deformation zones in time, is therefore traceable as long as it is permeable in the crust.

Acknowledgments
Neutron diffraction analyses were performed at D1B in ILL, within the 1-D2-163 experiment. Part of this work has been funded by the CGL2016-78560-P project of the Spanish Ministry of Science and Innovation.

References

Part of this work has been funded by the CGL2016-78560-P project of the Spanish Ministry of Science and Innovation.