

Clumped isotope analysis in nitrous oxide by mid-IR laser spectroscopy: analytical developments and validation

<u>Kristýna Kantnerová</u>, Longfei Yu, Daniel Zindel, Mark S. Zahniser, David D. Nelson, Béla Tuzson, Lukas Emmenegger, Mayuko Nakagawa, Sakae Toyoda, Naohiro Yoshida, Stefano M. Bernasconi, Joachim Mohn

🏓 Empa

Materials Science and Technology

N₂O absorption bands in mid-IR

446 and singly substituted – HITRAN2012 clumped – simulations in PGOPHER based on spectroscopic constants from Amiot 1976, Toth 1991, Wang et al. 2009 and Jun-he Du et al. 2011

Kantnerová et al. Rapid Commun. Mass Spectrom. 2020, submitted.

Kantnerová et al. Rapid Commun. Mass Spectrom. 2020, submitted.

New reference scale for clumped N₂O

 y_{458} y_{446}

- using a working standard gas
 - thermal equilibration of the working standard 1.
 - \rightarrow real mole fraction of clumped species in the gas (from statistical thermodynamics)

wstd

absolute calibration based on mole 2. fractions of all measured isotopocules in the working standard

 \rightarrow gravimetric mixtures of the working standard in N_2

mole fraction of singly substituted species derived from known δ values

Wang et al., Geochim. Cosmochim. Acta 68 (23), 2004, 4779 - 4797.

4 5 8

5 4 8

Validation of the new reference scale

- for singly substituted isotopocules only
- > validation gas different isotopic composition, concentration in the calibration range
- compared to another QCLAS and IRMS that use the conventional δ-calibration scale

method	δ456 / ‰	δ546 / ‰	δ448 / ‰
dual-laser QCLAS (this work)	15.53 ± 0.16	16.27 ± 0.17	55.13 ± 0.24
QCLAS	15.82 ± 0.06	16.80 ± 0.08	$53.93 \pm 0.06^{*}$
IRMS	-	-	55.96 ± 0.07

 * deviation due to limited span of available standards for $\delta^{18}O$

Kantnerová et al. Rapid Commun. Mass Spectrom. 2020, submitted.

Comparison of QCLAS and HR-IRMS

Thermo Scientific[™] 253 Ultra[™]

method	measurement time (incl. calibration)	precision / ‰	amount of N ₂ O / µmol
dual-laser QCLAS (this work)	45 min	0.10 - 0.50	4
HR-IRMS	8 – 10 hrs	0.10 - 1.30	10

Magyar et al., Rapid Commun. Mass Spectrom. 30, 2016, 1923–1940.

Comparison of QCLAS and HR-IRMS

- for all isotopocules (except 556, HR-IRMS is not able to measure it)
- three gases differing in bulk isotopic composition ($\delta^{15}N_{bulk}$, $\delta^{18}O$) VG2, VG3, VG4
- gases thermally equilibrated at 100 and 200 °C
- comparison with theoretical predictions based on statistical thermodynamics

Wang et al., Geochim. Cosmochim. Acta 68 (23), 2004, 4779 – 4797.

- HR-IRMS no correction for true content of 458 and 548 in their working standard gas, it was not characterized
- see the next slide comparison plots:
- HR-IRMS has clear problems with distinguishing the two isotopomers 458 and 548 (panel d)
- QCLAS has a very good agreement with theoretical predictions

Comparison of QCLAS and HR-IRMS

......

Conclusion

- new absolute calibration scheme for clumped N_2O isotopes
- validated using gas with different isotopic composition
- comparison with currently prevailing HR-IRMS

advantages of QCLAS – less time-consuming, better precision,
accuracy, and repeatability, possibility of on-line sampling

- no need for complex correction schemes

Application

- N₂O produced by denitrifier *Pseudomonas aureofaciens* collaboration with Tokyo Institute of Technology under JSPS fellowship
- UV photolysis of N_2O ongoing experiments
 - collaboration with University of Copenhagen

(Malte F. Jespersen and Matthew S. Johnson)

Acknowledgement for funding:

FNSNF

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

