Using the Baltic Sea to advance algorithms to extract altimetry-derived sea-level data from complex coastal areas, featuring seasonal sea-ice.

Marcello Passaro¹, **Felix L. Müller**¹, Adili Abulaitijiang², Ole B. Andersen², Denise Dettmering¹, Jacob L. Høyer³, Milla Johansson⁴, Kristine Skovgaard Madsen³, Laura Rautiainen⁴, Ida M. Ringgaard², Eero Rinne⁴, Jani Särkkä⁴, Rory Scarrott⁵, Christian Schwatke¹, Florian Seitz¹, Eimear Tuohy², Laura Tuomi⁴, Americo Ambrozoio⁶*, Marco Restano⁶**, Jérôme Benveniste⁶

¹ Deutsches Geodätisches Forschungsinstitut, Technische Universität München (DGFI-TUM), Germany
² SPACE National Space Institute, Technical University of Denmark, (DTU), Denmark
³ Danish Meteorological Institute (DMI), Denmark
⁴ Finnish Meteorological Institute (FMI), Finland
⁵ MaREI Centre, Environmental Research Institute, University College Cork (UCC), Ireland
⁶* DEIMOS, c/o ESA-ESRIN, Italy
⁶** SERCO, c/o ESA-ESRIN, Italy
⁶ ESA-ESRIN, Italy

EGU General Assembly 2020
Virtual Presentation, 03.05.2020
The Baltic Sea – Motivation

What?
- Generation of novel long-term multi-mission along-track and gridded sea level products

Why?
- Previous products show only sparse information in the northern Baltic Sea (no sea-ice treatment)
- Improvements in retracking solutions (closer to the coast), geophysical corrections etc.
- Perfect playground as laboratory for Coastal Altimetry (challenging coastlines and sea-ice coverage)
- Exploiting Artificial Intelligence Algorithms (Unsupervised Radar Waveform Classification, Clustering, K-Medoids)
- Good validation possibilities (large number of tide gauges, optical and SAR image comparisons etc.)
Workflow Baltic+ SEAL

18 months ESA Tender Project

6 Work Packages
1. Scientific Requirements (FMI)
2. Dataset collection (DMI)
3. Algorithm Development and Validation (TUM)
4. Dataset Generation and Impact Assessment (DTU)
5. Scientific Roadmap (UCC)
6. Management and Promotion (TUM)
• ~ 25 years Multi-mission altimetry data (LRM & SAR)
• Usage of ALES+ retracted high-frequency along-track observations
• Multi-mission cross calibrated Sea Surface Heights
  • Regional cross calibration based on high-frequency along-track observations
Algorithm Development and Validation - Unsupervised Classification

- Finding open water (lead) to estimate sea surface heights with multi-mission altimetry data in the northern Baltic Sea region within the sea-ice layer
- Unsupervised classification of waveforms without the use of selected training data for pulse-limited and Delay-Doppler altimetry data
- Comparison of classification using optical images and side-looking SAR
Algorithm Development and Validation - Unsupervised Classification

- Altimeter waveforms (i.e. radar echoes) are affected by surface conditions (e.g. roughness)
- Lead or calm water returns (no wind or waves): single-peak shape, specular behavior, strong backscatter
- Open Ocean waveforms: Brown-like shape, weak backscatter
- Sea-Ice returns: more random shape, backscatter depended on sea-ice surface, strong noise

ERS-2

Sentinel-3

Pulse-Limited

Delay-Doppler
Algorithm Development and Validation - Unsupervised Classification

- Usage of Artificial Intelligence Algorithms (Data-Mining)
- Application of unsupervised classification → see Müller et al. 2017

- **Input: Original waveform data**
  - Definition and computation of waveform features
    - Maximum Power, waveform width, decay of trailing edge etc.
      (Parameters describe the waveform’s shape and its features)
  - Clustering of waveforms in clusters applying K-medoids
    - Waveform reference model
  - Assigning waveform clusters to surface conditions
    - 4 classes: calm water, ocean, sea-ice and undefined
  - Classification of remaining waveforms using reference model and K-nearest neighbor (K-NN)
  - **Classification output:** WATER [1] | ICE [0] | UNDEFINED [0] (per measurement)

- Same method for LRM and SAR missions, but slightly different feature space
Unsupervised Classification to detect leads

- Water
- Ice


Sentinel-3A vs. Sentinel-2B 2018-04-17 / Δt = 37 min

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München
Algorithm Development and Validation (Retracking – ALES+)

• Sub-waveform retracker to avoid coastal contamination
• Adaptive trailing edge decay to retrack peaky waveforms from leads
• Homogenous range estimation of lead/polynya, open ocean and coastal waveforms (avoids internal biases)

Algorithm Development and Validation (Multi-Mission Cross Calibration)

• Offset not always time-constant => drifts!
• Differences in sea level heights can have large-scale geographical pattern
• A location-dependent multi-mission cross-calibration (MMXO) between all missions is needed
• Output: time series of radial errors => applied as corrections to each measurement

Algorithm Development and Validation (Multi-Mission Cross Calibration)

- Multi-mission crossover analysis: regional approach based on high-frequent SSH observations
- Two – four missions per 10 day cycle / max. time differences = 3 days

Crossover Differences

Mean range biases wrt TOPEX
Algorithm Development and Validation (Sea Surface Heights)

Sea Surface Heights ALES+ 2009-04 (Jason1-EM,Jason-2,Envisat)
Preliminary Results: Mean Sea Surface

- A new Mean Sea Surface is being produced within the project
- In the current version, leads among sea ice and SAR altimetry not yet included
- Regional differences between DTU15 and new Mean Surface exist particularly in coastal regions

Danish Straits

Finnish Coast
Preliminary Results: Monthly Sea Surface Height Grids

- Gridding along-track SSH data (1995-05 → 2019-05) on a triangular, unstructured grid
- Using Least-Squares Methods by fitting an inclined plane to non-regular distributed grid nodes
- Observations are distance-based Gaussian weighted
- Nearly equally spaced grid nodes with 7-8 km spatial resolution
Preliminary Results: Monthly Sea Surface Heights

- Example of gridded Sea Level Anomalies and uncertainties (2017 March)
Preliminary Results: Sea Level Analysis - Amplitude of annual cycle

Mean annual cycle amplitude: 9cm (consistent with Stramska, M., and Chudziak, N. (2013))

Sloping annual cycle amplitude in the Skagerrak Sea [Passaro et al., 2015]
Preliminary Results: experimental high-temporal resolution gridding

- The recent availability of several altimeters opens new possibilities for optimal interpolation every few days
- The objective is to provide a storm surge model with the best possible initial state (SSH BEFORE the surge)
- Combination of altimetry, tide gauge observations and the output of a hydrodynamic ocean model
Conclusions

- Baltic SEAL is a laboratory for high-frequency multi-mission satellite altimetry (LRM & SAR)
- Application of coastal dedicated retracking algorithms (ALES+) and classification techniques based on Artificial Intelligence
- By the end of 2020, a multi-mission cross-calibrated along-track product, monthly grids and a new mean sea surface will be freely available
- The techniques exploited in this framework can be easily transferred to other regions
Stay tuned and visit: [http://balticseal.eu/](http://balticseal.eu/)