Resolution dependence of magnetosheath waves in global hybrid-Vlasov simulations

Maxime Dubart1, Urs Ganse1, Adnane Osmane1, Andreas Johlander1, Markus Battarbee1, Maxime Grandin1, Yann Pfau-Kempf1, Lucile Turc1 and Minna Palmroth1,2
1Department of Physics, University of Helsinki, Helsinki, Finland
2Space and Earth Observation Centre, Finnish Meteorological Institute, Helsinki, Finland

Simulations set-up
- Global hybrid-Vlasov model: VLASIATOR [1]
- Cartesian 2D spatial grid
- Cartesian 3D velocity grid
- Protons described as velocity distribution functions (VDFs)
- Electrons as a cold massless charge neutralizing fluid
- Closure of the system: generalised Ohm’s law with Hall term
- Noon-midnight meridional plane (X-Z)
- Inner boundary at 4.7 RE from the centre of the Earth
- Solar wind: flowing in -X direction, 750 km/s
- IMF: 5 nT, 45 degrees angle with respect to X, southward
- Temperature: 0.5 MK
- Density: 1 cm⁻³

Three different spatial resolutions

\[\Delta r = 300 \text{ km} = 0.76 \text{ di} \]
\[\Delta r = 600 \text{ km} = 0.38 \text{ di} \]
\[\Delta r = 900 \text{ km} = 0.25 \text{ di} \]

Ion-scale waves
- Fast Fourier Transform
- Mirror Modes [2]

Velocity Distribution Functions

• Proton cyclotron and Mirror instabilities well resolved at \(\Delta r = 300 \text{ km} \). Sufficient maximum resolution
• Proton cyclotron instability not resolved at \(\Delta r = 900 \text{ km} \)
• Temperature anisotropy increases at low resolution due to not resolving AIC waves

Temperature anisotropy

\[\Delta r = 440 \text{ km} = 0.6 \text{ di} \] presents an acceptable minimum resolution for study of magnetosheath waves in global hybrid-Vlasov

Alfvén Ion Cyclotron waves
circularly polarised

Left-handed → [Alfvén Ion Cyclotron waves]

Mirror Modes [2]