Investigations of the Oligocene-Miocene opening of the Ligurian Basin using refraction seismic data - LOBSTER

H. Kopp¹,², A. Dannowski³, I. Greve Meyer¹, D. Lange¹, M. Thorwart², G. Caielli³, R. de Franco³, F. Petersen¹, F.N. Wolf¹, B. Schramm¹, and MSM71 cruise participants

1 GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
2 CAU, Institute of Geosciences, Christian-Albrechts-Universität zu Kiel, Germany
3 IDPA-CNR, Istituto per la dinamica dei processi ambientali, Sezione di Milano, Italy
Introduction

- The Ligurian Basin is a back-arc basin generated by SE trench retreat of the Apennines-Calabrian subduction zone.
 - ~30 Ma rifting was initiated associated with magmatism on land along the western margin.
 - ~21 Ma end of rifting and start of anticlockwise rotation of the Corsica-Sardinia block and oceanic spreading was proposed.
 - ~16-15 Ma end of opening associated with a second volcanic phase along the Corsican margin

Key questions of our study:

What is the nature of the Ligurian Sea basement?
Where is the transition from continental to oceanic crust?
How is the geometry of the continent-ocean transition (COT) zone?

Fig. 1: Geodynamic evolution of the Liguro-Provencal Basin after Barruol et al. (2004)

Fig. 2: Topographic map (GMRT data, Ryan et al., 2009) of the Liguro-Provencal Basin displaying recent seismic experiments including the LOBSTER profiles p01 and p02 studied here. Previous studies divided the basin into different zones of continental and oceanic domains based on seismic, magnetic and gravity data (white dashed lines and numbers I to V).
Results and interpretation of LOBSTER profile p02

- Stacked picks along p02 show a nearly 1D structure (Fig. 4a)
- Clear arrivals from sediments (Psed < 4.6 km/s) and a small velocity gradient
- Abrupt change to mantle phases (Pn ~ 8 km/s) (Fig. 4b)

Results from travel time tomography (Fig. 5):

- Uppermost sedimentary layer: 2.2 – 3.5 km/s with a high velocity gradient (Plio-Quaternary)
- Deeper layers: 3.5 - ~5.7 km/s (Messinian salt and Pre-Messinian and Tortonian sediments)
- Acoustic Basement: at ~9 km (CB-MCS) or ~10 – 11.5 km depth (CB)
- Mantle: at ~11-13 km depth and velocities >7.3 km/s
- Results from the Free-Air gravity modelling support the findings (Fig. 6).

→ Continental crust along the entire profile p02
→ Low degree of mantle serpentisation

Fig. 6: Density model along the LOBSTER profile p02 and extended northwards along the MAKRIS profile towards the NE Ligurian coast (Dannowski et al., 2020). The upper panel shows the fit between the model response and the observed Free-Air gravity data from (Smith and Sandwell (2014)).

Fig. 5: (a) Seismic velocity field along LOBSTER profile p02 (upper panel). (b-d) Statistics of the modelling procedure (modified, Dannowski et al., 2020).

Fig. 4: (a and b) Data and travel time picks of LOBSTER profile p02 (modified, Dannowski et al., 2020). (c) The shows the velocity distribution of the final velocity model and indicates a gap of velocities typical for oceanic crust.

Data, results and interpretation
Preliminary results and interpretation of LOBSTER profile p01

First results along p01 are similar to profile p02 in the centre of the basin:

- **Uppermost sedimentary layer:** ≈2.2-3.5 km/s with a high velocity gradient (Plio-Quaternary)
- **Deeper layers:** ≈3.5-5.6 km/s (Messinian salt and Pre-Messinian and Tortonian sediments); deeper sediment layers pinch out towards Corsica.
- **Crystalline Basement (CB):** at ≈9-10 km in the central basin shallowing towards the Corsica coast with seismic velocities between ≈5.6 km/s to 6.8 km/s and thickening in the Necking Zone (~30 km distance) from 6 km to ~24 km. The lower crust pinches out in the Central Basin.
- **Mantle:** at ~12 km depth and velocities >7.5 km/s in the central basin. It slightly shallows in the distal margin to ~11 km before it extremely deepens over a short distance to a depth of ~24 km.

→ Continental crust along the entire profile p01
→ No indication for oceanic crust or an oceanic spreading centre in the Liguro-Provencal Basin along LOBSTER profile p01.
Thank you!

References

Afifhado et al., 2015, https://doi.org/10.2113/gssgfbull.186.4-5.331
Dannowski et al., 2020 (modified accepted), https://doi.org/10.5194/se-2019-187
Gailler et al., 2009, https://doi.org/10.1016/j.epsl.2009.07.001
Moulin et al., 2015, https://doi.org/10.2113/gssgfbull.186.4-5.309
Ryan et al., 2009, https://doi.org/10.1029/2008GC002332