
Hemispheric Symmetry of Top of the Atmosphere Shortwave Reflection in CERES and CMIP5 Models Traute Crueger, Hauke Schmidt, and Bjorn Stevens

Introduction

Top of the atmosphere (TOA) short wave (SW) reflection from CERES approximately shows a hemispheric symmetry, although TOA SW clear sky reflection reveals an asymmetry due to a larger land fraction and aerosol burden in the northern hemisphere. Here, we address the following questions: 1.) How is the latitudinal distribution of the (a-)symmetries? 2.) To what extent do symmetric clouds mask the clear sky asymmetry? 3.) How is the amount of compensation by asymmetric clouds? 4.) Do climate models simulate a TOA SW reflection symmetry? 5.) Do clouds play a similar role in models and CERES?

Method

Clouds mask the hemispheric asymmetries of clear-sky reflection. To assess this effect, we calculate a reference reflection by assuming hemispheric symmetric clouds (Voigt et al., 2014). The difference between this reference asymmetry and the all sky asymmetry represents the contribution of asymmetric clouds.

Max-Planck-Institut für Meteorologie

traute.crueger@mpimet.mpg.de

Results

- The (a-)symmetries in CERES are a result of compensation within the equatorial to mid-latitudes and the subpolar to polar areas.
- Symmetric clouds mask CERES clear sky reflection by about one third.
- tropical areas and by areas poleward of the mid latitudes.
- Individual CMIP5 models show a wide spread in all sky (a-)symmetry.
- The All sky model spread mostly reflects the asymmetries of the asymmetric cloud contributions.
- W/m^2 .
- The model mean bias of all sky reflection asymmetry is to about 80% due to contributions by asymmetric clouds.

References: Voigt, A., B. Stevens, J. Bader, and T. Mauritsen, 2014: Compensation of Hemispheric Albedo Asymmetries by Shifts of the ITCZ and Tropical Clouds. J. Climate, 27, 1029–1045, https://doi.org/10.1175/JCLI-D-13-00205.1. Loeb, N. G., D. R. Doelling, H. Wang, W. Su, C. Nguyen, J. G. Corbett, L. Liang, C. Mitrescu, F. G. Rose, and S. Kato, 2018: Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product. J. Climate, 31, 895-918, doi: 10.1175/JCLI-D-17-0208.1

Compensation of CERES asymmetric clouds is a result of opposite contributions by

• The model mean generally matches the CERES data very well. The bias is about 1

asymmetry bias of contributions assuming symmetric clouds and to only 20% due to

