New insights and best practices for the successful use of EMD, Iterative Filtering and derived algorithms

A. Cicone1 A. Stallone2 M. Materassi3 H. Zhou4

1Università degli Studi dell’Insubria, Como, Italy
2Istituto Nazionale di Geofisica e Vulcanologia (INGV)
3Istituto dei Sistemi Complessi, CNR, Firenze, Italy
4Georgia Institute of Technology, Atlanta, USA
Contents

1. Motivation
2. Theory
3. Issues
4. Take Home Messages
Motivation: The Empirical Mode Decomposition (EMD) and Iterative Filtering (IF) based algorithms could easily be misused if their known limitations, together with the assumptions they rely on, are not carefully considered.

We call attention to some of the pitfalls encountered when implementing these techniques. We have detected three critical factors that are often neglected:

1. Boundary effects
2. Presence of spikes/jumps in the original signal
3. Signals generated by processes characterized by a high degree of stochasticity

→ artefact-prone decomposition of the original signal
Contents

1. Motivation
2. Theory
3. Issues
4. Take Home Messages
Problem: Decompose a nonlinear/non-stationary signal $s(x), x \in \mathbb{R}$, into a few **simple components** that represent the features of the signal. We do not want to use any previous knowledge and assumptions on s.

Traditional methods, like Fourier or Wavelet Transform, require assumptions on the signal and do not work well with nonlinear and/or non-stationary signals.

EMD & IF methods

Advantages
- Local and adaptive data-driven method → can handle nonlinear and/or non-stationary signals
- Bypass partially the Heisenberg uncertainty principle → accurate time-frequency representation of the signal
EMD & IF representation of a signal $x(t)$

\[x(t) = \text{res}(t) + \sum_{k=1}^{K} \text{IMF}_k(t) \]

Sifting process: given a signal $x(t)$, we capture its highest frequency oscillations by subtracting its moving average from the signal itself.
1. Motivation

2. Theory

3. Issues
 - Boundary conditions
 - Spikes/jumps in the signal
 - Decomposition of highly-stochastic signals

4. Take Home Messages
If not properly handled, **end effects** could arise: Anomalously high amplitudes of the IMFs and artifact wave peaks towards the boundaries.

Problem 1: For the EMD–based methods, it is particularly difficult to estimate a priori these errors contributions
Problem 2: There are many alternative versions of EMD algorithms, each with its own peculiar way of handling boundaries
Problem 3: IF–based techniques algorithms are also prone to end effects, even though there is a complete mathematical foundation

Solution
Pre–extend the signal using an a priori chosen **optimal extension**, based on the specific features of the signal under study
Signal Pre-extension Algorithm

1. Subtract from the signal s its mean value m
2. Extend $s - m$ outside the boundaries in the preferred or optimal way, producing an extended signal s_{ext}
3. Multiply s_{ext} by a characteristic function χ which has value one in the interval corresponding to the original signal s and goes smoothly to zero as we approach the new boundaries of s_{ext}
4. Add back the mean value m of the original signal

$$s_{\text{new}} = \chi \cdot s_{\text{ext}} + m$$

The produced signal s_{new} is periodical at the boundaries
Example of a signal pre-extension

- Plain 'symw' extension
- Smart 'symw' extension
- Original signal
Artificial example: EMD decomposition of the signal without pre–extension (red) vs after pre–extension (black)
Real life example: from Micro-scale, mid-scale, and macro-scale in global seismicity identified by empirical mode decomposition and their multifractal characteristics by Sarlis, N. V. et al. Scientific reports 8, 9206 (2018)

EMD decomposition of the magnitude time series of the global seismicity, for events of $M \geq 5.0$.
<table>
<thead>
<tr>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
</tr>
<tr>
<td>Issues</td>
</tr>
<tr>
<td>Take Home Messages</td>
</tr>
</tbody>
</table>

Boundary conditions

EMD decomposition after pre-extension
Contents

1. Motivation

2. Theory

3. Issues
 - Boundary conditions
 - Spikes/jumps in the signal
 - Decomposition of highly-stochastic signals

4. Take Home Messages
If spikes/jumps are present in the time series, they can substantially affect the signal decomposition

Problem: When the EMD and IF techniques are applied to an impulse, their decompositions introduce low frequencies at higher index IMFs \rightarrow not meaningful from a physical point of view

Solution
Always *pre-process* the signal, by removing spikes and splitting the signal in two subsets, before and after the jump
Artificial Example: Constant–amplitude signal with an impulsive spike
EMD decomposition of the impulsive spike

EMD decomposition of Taiwanese daily earthquakes number time series, for events of magnitude $M_L \geq 3.0$.

Spike “propagation” effect
EMD decomposition after jump preprocessing
Motivation

Theory

Issues

Boundary conditions

Spikes/jumps in the signal

Decomposition of highly-stochastic signals

Take Home Messages
Problem: The EMD- and IF- based methods can be effectively applied to signals that can be described as oscillatory solutions of differential equations.

Open question

Can these techniques successfully reproduce the features of signals containing a certain degree of stochasticity?

→ We consider the multiscale statistical analysis of a synthetic signal. We generate it by the **p-model**: branching model which mimics the irregular and intermittent distribution of energy in turbulent media.
We model a signal $p(x)$ obtained from the summation of $n = 12$ generations $u_{k=0,...,12}$, each representing a different realization of a p–model $p(x) = \sum_{k=0}^{12} u_k(x)$.

We decompose this signal via DWT, using both “Haar” and “Daubachies 4” (db4) bases, EMD and IF algorithms (from left to right, respectively).
Motivation

Theory

Issues

Take Home Messages

Decomposition of highly-stochastic signals

Problem

It is evident that none of the aforementioned techniques is able to extract components which resemble the corresponding ground truth u_k generations. These techniques will always produce a decomposition of the signal, no matter what the process behind it is.

We now test the ability of all these techniques in reconstructing multiscale statistical features of the given signal. In particular, we consider:

- Standard deviation $\sigma (p_h(x))$
- Skewness $S (p_h(x))$
- Excess of kurtosis $K (p_h(x))$
- Total energy of the h-th scale $\mathcal{E} (p_h(x))$
- Inner product between two nearby scales $\mathcal{C} (p_h(x))$
Decomposition of highly-stochastic signals

- Motivation
- Theory
- Issues
- Take Home Messages
Discussion

- EMD and IF decompositions prove to be more accurate in replicating the standard deviation and power of the different components.
- The skewness values, as expected, are close to zero. Both EMD and IF enforce symmetry with respect to the horizontal axis.
- The inner products tend to zero with EMD and IF methods, since they produce IMF components which are locally almost orthogonal each other.
- Regarding the kurtosis, all the techniques are all able to properly reproduce its trend as a function of the scale.

→ *All* the multiscale analysis tools compared in this example are able to detect the intermittency of the signal under analysis.
The impact of boundary errors can always be reduced by properly *pre-extending the signal* under study. For this reason, we propose a new approach for the pre-extension of a given signal.

When dealing with a signal containing spikes, the optimal solution would be to study its decomposition *before and after removing the spikes* from the signal itself.

When a jump is present in the data set, a good practice would be to split it into *before* and *after* the jump, and to *analyse the two portions separately*.
Although the derived decomposition is always correct from a mathematical standpoint, it may be the case that there is not a corresponding evident physical meaning of each IMF, as for the case of stochastic signals.

Nevertheless, the EMD– and IF–based methods proved to have good performance from a multiscale statistical analysis prospective.

It remains, an open problem to understand up to which degree of stochasticity these techniques are able to reproduce with a good accuracy the single components contained in a given signal.
If you torture the data long enough, it will confess.

Ronald Coase