The rise of high mountain peaks: Feedback between
orographic precipitation, fluvial erosion and flexural isostasy
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To view the embedded movies
please download the presentation and
open with Adobe Acrobat Reader
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High mountains on thin crust IN VRN i

Contents lists available at Sc

Please check out our recent paper in EPSL! e Earth and Planetary Science Letters
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The supplement contains our global peak dataset
Wlth more than 16I000 prominent peaks. Glacial erosion promotes high mountains on thin crust
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OpenLEM
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Stefan’s OpenLEM code efficiently couples
Earth surface processes such as fluvial
erosion and mass wasting at hillslopes with
flexural isostasy and orographic
precipitation.

void applyFlexure ( double dt =
double tau = this->tau/dt;

for (int 1 =0; i <m; ++i )

for ( int j =

This allows for the exploration of complex ¢
feedbacks between topography, climate
and the Earth’s crust.

Node *p = getNode(i,j);
p->h -= p->w;
WlOI[i][]] = p->w;
rhs[O1[11[]] =

}
#ifdef RIGIDITY

if ( rig[0][01[0] !'= pow(getNode (O,

{
for ( int i =

o B

i Jo<n; 4+ )

;l<m; ++1 )
=0; j <n; ++j ) rig[0]1[i][j] = pow(getNode(i,j)->alpha,s)/4;

(a) Undissected Plateau

(c) Dissected Plateau
a=50
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Upper Mantle

Upper Mantle

-rhoc*(p->h+p->g) + tau*p->w;

)->alpha,4)/4 )

; U< rig.size(); ++1 )

ig[l-11, rig[l], rig[l-1] );
= 0; 1 < rig[l].size(); ++1i )
j =05 J < rig[l][i].size(); ++j ) rig[l][i

wet dry

Orographic Precipitation



Work in Progress Examples

The Impact of Flexural Isostasy



Mountain Range Evolution | Topography and Peaks | Drainage Networks IN VRN i

* Block uplift: central
model domain

e Uniform Precipitation

* No Isostasy

Topography forms a central ridge — highest peaks are located at the central ridge







Mountain Range Evolution | Topography and Peaks | Drainage Networks e

Uniform Precipitation
Flexural Isostasy
Flexural Parameter

o =25 km

* Central part of the mountain range subsides under it own weight
* Main ridges and highest peaks evolve at the transition from the range to the foreland
* Main ridges and highest peaks migrate towards the uplift center







Mountain Range Evolution | Topography and Peaks | Channels IN VRN i .










Work in Progress Examples

The Impact of Orographic
Precipitation



Mountain Range Evolution | Topography and Peaks | Drainage Networks ST

Orographic Precipitation

* Q controls advection of
moisture in wind
direction.

D controls diffusion
normal to wind direction
S controls the rate of
saturation

P controls precipitation
rate at boundary cells

A is a scaling parameter

No Flexural Isostasy

Orographic precipitation causes a strong topographic asymmetry
Advection (Q) and diffusion (D) of moisture controls the pace of incision and divide migration







Mountain Range Evolution | Topography and Peaks | Drainage Networks ST

Orographic Precipitation

* Q controls advection of
moisture in wind
direction.

D controls diffusion
normal to wind direction
S controls the rate of
saturation

P controls precipitation
rate at boundary cells

A is a scaling parameter

No Flexural Isostasy

Orographic precipitation causes a strong topographic asymmetry
Advection (Q) and diffusion (D) of moisture controls the pace of incision and divide migration







Mountain Range Evolution | Topography and Peaks | Channels ST

Low spreading rate of moisture High spreading rate of moisture

Orographic Precipitation

Q=100: Fast advection of moisture in wind
direction

D=100: Strong diffusion moisture normal to
wind direction

Orographic Precipitation

Q=10: Slow advection of moisture in wind
direction

D=10: Low diffusion moisture normal to wind
direction










Work in Progress Examples

The Impact of Orographic
Precipitation and Flexural Isostay

Unfortunately we messed up a new scaling routine for precipitation so that
precipitation rates are not comparable between different model runs. It seems that
we produced 800 GB of “garbage” ... .



Mountain Range Evolution | Topography and Peaks | Drainage Networks ST

Orographic Precipitation

* Q controls advection of
moisture in wind
direction.

D controls diffusion
normal to wind direction
S controls the rate of
saturation

P controls precipitation
rate at boundary cells

A is a scaling parameter

Flexural Isostasy
* o (50 km) controls the

length scale of flexure

* Orographic precipitation causes a strong topographic asymmetry
» |sostatic uplift due to erosional unloading causes a complex topographic pattern







Mountain Range Evolution | Topography and Peaks | Drainage Networks ST

Orographic Precipitation

* Q controls advection of
moisture in wind
direction.

D controls diffusion
normal to wind direction
S controls the rate of
saturation

P controls precipitation
rate at boundary cells

A is a scaling parameter

Flexural Isostasy
* o (10 km) controls the

length scale of flexure

* Orographic precipitation causes a strong topographic asymmetry
» |sostatic uplift due to erosional unloading causes a complex topographic pattern







Mountain Range Evolution | Topography and Peaks | Channels IN VRN i

Weak Lithosphere Very weak Lithosphere

Flexural Isostasy
* o =10 km (not on Earth)

Flexural Isostasy
e o =50 km (still realistic)

Precipitation

Precipitation
* LowQandlowD ( )

* LowQandlowD ( )









What next?

Repair scaling method for orographic precipitation
Explore the entire parameter space
Apply to natural examples

Please stay tuned and visit us at:

(joerg.robl@sbg.ac.at)

(stefan.hergarten@geologie.uni-freiburg.de)


http://hergarten.at/
http://www.geodynamics.at/
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