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tu.de)

It appears that oceanographers and meteorologists have different pictures in their minds when
they speak about internal waves. The reason might be that in both communities different
paradigmatic gravity wave models based on different simplifying assumptions are in use. For the
oceanographer, internal wave beams are rather common, a feature virtually unknown to the
atmospheric scientist. In contrast, wave packets traveling upwards in the atmosphere is the
standard picture for the meteorologist. The mathematical origin of such a different view is that for
time harmonic waves, the underlying boundary value problem for internal waves in the ocean is
hyperbolic but elliptic for atmospheric flows.

In the present paper we discuss the consequences that result from these two different types of
boundary value problems. Wave focusing is a rather

generic process for hyperbolic problems and we argue that the latter should also be of interest to
meteorologists in view of new findings that indeed

a significant part of the internal waves in the atmosphere travel downward. We further apply some
of our findings to new laboratory data on inertial modes arguing that an additional shear flow
leads to an elliptic boundary value problem and beam-like wave fields, typical for the inertial
waves without a shear flow, become mode-like.
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Type of a partial differential equation

For second order linear partial differential equatio;]s (PDEs)
Augy + Bugy + Cuyy + Duy + Euy + Fu =G, (1)

with constants A to G, dependent variable u = u(z,y), and independent variables = and v, the sign of B2 — 4AC
determines whether the equation is elliptic B2 — 4AC' < 0, hyperbolic B2 — 4AC > 0, or parabolic B> — 4AC = 0.
For each type there is a pivotal example: the wave equation is hvperbolic. the Laplace eaquation is ellintic. and the
heat equation is parabolic.

Partial Differential For more information the reader might consult
EquRcions a textbook on partial differential equation. A good
source is the book shown to the left.

Lawrence C. Evans
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The Boussinesq equations linearized around the basic state with [u,w, p, p| = [U(2),0, po(2), po(2)] read.

oy +Ugthutpy = — g2
(U ypruwI? = o

Using the definition D = % +U % we yield

DQV?L'{" & 1\'?2'1.5'-’12: = Dﬁlf'a:Uzz-

Here vy is the streamfunction in the x-z plane.
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Typically, for the atmosphere we assume a stationary mean flow and the equation can be reduced to

Vg'u': + A2 =0,

with a constant

Obviously, this equation is elliptic.

Ocean

Typically, for the ocean we assume a zero mean flow but tidal oscillations with frequency ® and then
the equation can be reduced to

92 5 02
=il )\'0[2 =0
with
‘ \'YQ = w’)
2 p 4
XY= —
(v @)

Obviously, this equation is hyperbolic for A2 > 0.
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FIG. 1: A) Sketch of a horizontal flow towards a gaussian-shape topography. Periodic boundary conditions in the lateral
direction are used. The top surface is either open or consists of a rigid wall. B) Stationary internal gravity wave field for
an open upper surface in term of the vertical velocity. The topography is located at z = 0. The model parameters are
b=10,N =11,U = 1,N = 11,A = N/U = 11 implying real wave numbers. C) Stationary internal gravity wave field for a
rigid upper surface at z = 7 in term of the vertical velocity. Model parameters unchanged.
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FIG. 3: A) Sketch of an oscillating flow over a gaussian-shape topography. Periodic boundary conditions in the lateral direction
are used. The top surface is either open or consists of a rigid wall. B) Internal gravity wave beams for an open upper surface
in term of the vertical velocity. The topography is located at x = 0. The model parameters are b = 10, kpae = 1000 N = 1, w =
v/0.85 implying real wave numbers. C) Internal gravity wave beam for a rigid upper surface at z = 7 in term of the vertical
velocity. Model parameters unchanged.

N
Y =g Z ay cos(k(z £ Az)).
k=1



In contrast to the elliptic atmospheric model, the oceanic ' t Brandenbugische
model is NOT invariant with respect to a rotation of the U o
coordinate system

Oceanic model for a frame rotated with the angle 6:
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FIG. 4: Sketch of an upward horizontal flow towards a gaussian-shape topography. Here the channel has been rotated about
the angle a = 20°.
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FIG. 5: Contours of the stream function for a sinusoidal bottom topography. Figure from V.A. Melnikov 1982, Effect of bottom
relief on internal waves, Izvestiya, Atmospheric and Oceanic Physics, Vol. 18, No. 7, 603-606.

Extreme case: focusing in a
closed and tilted domain
leads to the formation of a
wave attractor, i.e. a
singularity in the velocity
field.

U. Harlander, I.D. Borcia, A. Krebs.
Nonnormality increases variance of
gravity waves trapped in a tilted box.
Geophys. & Astrophys. Fluid Dyn.
DOI:10.1080/03091929.2018.1549660,
2018.
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FIG. 6: Wave attractor. Fundamental intervals, [0,0.2543] [0.7813, 1]. Box is tilted over 9°. Frequency has been chosen such
that internal wave rays have an angle of 45° in the non-tilted frame implying angles of 52° and 38° in the tilted frame.
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Summary

Typical solutions of the atmospheric case are stationary wavpackets for
which the mountain shape determines their structure.

For the oceanic case wave beams are typical. This is due to the fact
that here an infinite number of waves exist that all have the same
frequency. Superposing such waves gives the beam structure. Such a
superposition is not possible for the simple stationary atmospheric flow
case.

Whereas the Helmholtz equation (atmosphere) is invariant with respect
to coordinate rotation, the Poincare equation (ocean) gives rise to new
terms when the coordinates are rotated. In the rotated system, wave
focusing is generic and has been observed in numerical and
experimental data.
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Outlook

In the discussion so far we pointed out that the type of the boundary
value problem tells us a lot about the solution we can expect. In
geophysical fluid dynamics this does not only hold for gravity waves but
it has relevance in a broader context.

For rotating flows in closed containments we also find mode like
solutions and solutions governed by wave beams. In the literature it is
not sufficiently discussed why we can find such differences in cases
that seem to be close.

On the next slides we will give examples.
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FIGURE 4. (Colour online) Wave phases in the interval [—m, ] of a harmonic analysis
for different libration parameter settings. The Ekman number is E~4 x 107,
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Left we see a meridional section of
a rotating spherical shell. Such a
geometry has a large relevance for
many geophysical problems. The
results shown come from
experimental data when the rotation
of the spherical shell is modulated
by frequency o, and modulation
amplitude g;;,. Obviously, the flow in
the shell is dominated by beams
formed by a superposition of inertial
waves. This situation is similar to
the oceanic gravity wave case
considered before.

More details can be found in

M. Hoff, U. Harlander, and C. Egbers.
Experimental survey of linear and non-linear
inertial waves and wave instabilities in a
spherical shell. Journal of Fluid Mechanics, 789,
589-616, 2016.



M. Hoff and U. Harlander. Stewartson-layer instability in a wide-
gap spherical Couette experiment: Rossby number dependence

J. Fluid Mech. (2019), vol. 878, PP. 522-543. l t Brandenburgische
U Technische Universitat
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The pattern below result from a similar experimental setup. This time a horizontal
equatorial plane is displayed. In contrast to the experiment before, the inertial waves
are not excited by a modulation but by rotating the inner sphere and the outer shell
differentially. Hence the waves result from an instability of the driven shear flow.
Obviously, the pattern we see correspond with smooth wave modes and not with
beams. This situation is more similar to the atmospheric gravity wave case considered
before.

w=0.11 w=0.13 =O.]5 w=0.16 w=0.18

FIGURE 11. (Colour online) A series of five reconstructed patterns taken from the
m = 4 branch in figure 7(b) for £, = 60 r.p.m., E = 1.52 x l()‘i. From (a-e),
Ro_(O 18, 0:22,0.25,0.28, 0.31) and |V}.:=12,2.5,2:3, 1.7, 1.8) mm §. The colours
show the absolute value of velocity magnitude (blue — zero. red — max). The colour bar
is scaled such that red is saturated in relation to the maximum velocity. The height of the
horizontal plane is at h=4 cm above the equator.



Brandenburgische
U Technische Universitat
Cottbus - Senftenberg

Conclusion

It is constructive to interpret solutions of boundary value problems with
a view on the type of the underlying PDE. This seems to be a rather
straightforward or even a trivial step. However, the consequences of
such a change in type for the solutions in the case of confined fluids
can be rather dramatic.

Typical but very different patterns of flows in seemingly close situations
can be better understood taking into account the properties of
hyperbolic boundary value problems that are not so well studied in
literature.

U. Harlander and L.R.M. Maas. Two alternatives for solving
hyperbolic boundary value problems in geophysical fluid
dynamics. J. Fluid. Mech., 588, 331-351, 2007.
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Thanks for attention!

Thanks for support by
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