Current palynological pattern of steppe tundra at the Altai highland depressions

Ivan Strelkov, Ekaterina Nosevich, Mikhail Amosov, Kirill Chistyakov Saint Petersburg State University, Institute of Earth Sciences, Physical Geography & Landscape Design, Saint Petersburg, Russian Federation

Introduction

- Steppe-tundra (mammoth steppe) was the most extensive biome of Northern Eurasia during Quaternary glaciations. It disappeared during the Holocene
- Today the tundra, cold steppe communities and their mixture are found in Altai mountains

Aim of the research: to find the current analogs of Late Pleistocene steppe-tundra in the Altai highlands by comparing palynological and climate conditions of investigated area with LGM data of Northern Eurasia

Investigation Area

Belukha Mountain (4509 m)

Kazakhs

itan

Bertek depression
 Altai Republic, Russia
 49°19'N 87°42'E
 Altitude: 2 250 m above sea level
 Monticulate-morainic plain

2 Khindiktig-Khol' Lake depression Tuva Republic, Russia 50°21'N 89°49'E Altitude: 2 305 m above sea level Heterogenuous topography, steep slopes

Mongolia

Khulten Peak (4374 m)

Explanatory notes state boundary mountain range intermountain depression 1 - Khindiktig-Khol basin 2 - Ak-Khol basin 3 - Bertek depression 4 - mountain peak • mountain peak • meteostation a - Mugur-Aksy b - Kosh-Agach c - Bertek • botanical-geographical polygons

Mongun

(3970 m

Taiga

Materials and Methods

- Two expeditions on the Altai mountains: June 15 – July 14, 2018; July 15 – August 7, 2019
- During the palynological study 75 samples were collected for pollen analysis:
 - ✓ 56 subfossil
 - ✓ 13 -flower buds
 - ✓ 6 recent
- Landscape description
- Pollen analysis
- Comparative botany analysis

The study was financially supported by Russian Foundation for Basic Research Grant 18-05-00860

BIOME6000 Project

Aims of BIOME6000 Project :

- to summarize palynological data at MHO (6 ka years BP) and LGM (18 ka years BP) period;
- to compare current palynological patterns with the images at LGM an MHO periods

Vegetation classification has couple of steps:

- assignment of plant functional types (PFT);
- combination of characteristic PFTs determines different biomes

Steppe-tundra biome

- Problem: absence of steppe-tundra biome in modern environment and in BIOME6000 Project
- It may include features from steppe and tundra patterns
- DRYT biome used to be predominant in northern Eurasia in LGM
- It has a feature both of cold cryoxeric steppe (Yurtsev, 2001) and steppetundra (*Artemisia*, Cyperaceae and Caryophyllaceae)

Table 1. Vegetation description of STEP, TUND and DRYT biomes from "BIOME 6000" Project(Bigelow et al., 2003; Kaplan et al., 2003)

STEP	Artemisia, Chrisotamnus, Hippophae, Kobresia, Purshia, Brassicaceae, Chenopodiaceae
TUND	Alnus fruticosa, Betula nana, Salix herbacea, Cassiope, Draba, Dryas, Empetrum, Eriophorum, Papaver, Pedicularis, Vaccinium, Cyperaceae, Saxifragaceae, Sphagnum, lichens
DRYT	Artemisia, Kobresia, Brassicaceae, Asteraceae, Caryophyllaceae, Gramineae, true mosses

Betula rotundifolia

Salix polaris

Papaver radicatum

Dryas oxyodonta

H.

Pollen spectra Khindiktig-Khol`and Ak-Khol` basins (2018)

- Trees vary from 36.4% to 45.5% √ Betula nana – 28.7% √ Betula sect. Albae – 15.5% √ Pinus – 12.7%
- Herbs reach up to 62.0%

 $\sqrt{Poaceae - 30.2\%} \sqrt{Carex - 14.6\%} \sqrt{Cyperaceae - 10.4\%}$

• Chenopodiaceae contains up to 5.3% at Khindiktig-Khol` region

Pollen spectra Central Bertek (2018)

• Values of tree pollen – 36.4%

√ Betula nana – 23.0% √ Betula sect. Albae – 10.8% √ Pinus – 9.4%

• Herbs are predominant – almost 63.0%

√Poaceae – 30.0% √*Pyrola* – 12.0% √*Carex* – 9.6%
√Asteraceae – 8.4% √Cyperaceae – 7.4%

- Almost all observed points at Muzdy-Bulak are considered to be steppe
- Artemisia (up to 3.6%) share is higher at Muzdy-Bulak

Pollen spectra: Western and Eastern Bertek (2019)

- Trees dominate (56.3%). Role of birch is prevalent (up to 43.2%)
- Herb consistence equals 38.1% in average
 √Poaceae – 17.2% √Carex – 12.1% √Cyperaceae – 5.1% √Asteraceae – 5%
- Trees are predominant 59.3%
 √ Betula sect. Albae 41.5% √ Betula nana 17.3% √ Pinus 6%
- Herbs reach a value of 36.5%

 $\sqrt{Poaceae - 16.7\%}$ $\sqrt{Carex - 5.3\%}$ $\sqrt{Asteraceae - 4.7\%}$ $\sqrt{Cyperaceae - 4.2\%}$ $\sqrt{Pyrola - 4.2\%}$

Artemisia and Chenopodiaceae role in pollen spectra

- Artemisia and Chenopodiaceae are the prime indicators of steppe conditions
- Artemisia prevails at the steppe sites of central and eastern part of Bertek depression
- Chenopodiaceae is mostly found within the coexistence of tundra and steppe cenosis in Khindiktig-Khol' area and western part of Bertek depression

Recent data from Khindiktig-Khol`and Central Bertek

- Recent samples are sensitive to weather conditions (precipitation and frost)
- Received data represent us diverse combination of tree and herb pollen:
 - ✓ predominance of *Betula* and *Pinus*
 - ✓ Poaceae, Asteraceae and Cyperaceae are abundant
- All tree pollen are transferable except dwarf birch and willow

Conclusions

- Mixture of TUND and STEP biomes is observed within Khindiktig-Khol` basin, western and eastern parts of Bertek depression; STEP biome is prevalent in the central part of Bertek depression
- **Typical pollen composition**: *Betula*, Poaceae, Cyperaceae, Asteraceae, *Artemisia*, Chenopodiaceae
- Chenopodiaceae is a steppe indicator of more humid areas (Khindiktik-Khol` basin and western part of Bertek depression)
- Artemisia is the steppe indicator of more arid areas and is found mostly on the bottom of Bertek depression (especially in the central part).
- Results of palynological and paleoclimate studies showed that cold steppe and steppe-tundra are supposed to be analogs of Late-Pleistocene steppe-tundra in Northern Eurasia

Please ask your questions!

Contact

Ivan Strelkov archer792@gmail.com