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Ice fabric = 
orientation 
distribution of 
ice crystals. 

Ice fabric:  what is it and what properties can we measure with radar? 

With polarimetric radar-sounding we 
measure the strength and 

orientation of a `vertical girdle’ 
fabric: horizontal anisotropy

NEEM fabric (upper) from Montagnat et al. 2014 TC, Schmid image (lower) from Ian Hewitt, Karthaus notes
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Key question: how do girdle fabrics influence near-
surface deformation of Rutford Ice stream?

Ice fabric results in 
anisotropic ice 
rheology: `harder or 
softer to strain in 
different directions’
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Complex ice-surface deformation signature:
• Transition from shear-dominance at margins to greater influence of 

uniaxial-strain at ice-stream center.
• Extension and compression can both act along- & across- flow.

Horizontal shear Uniaxial strain along-flow Uniaxial strain across-flow

Rutford Ice Stream surface strain rates (Minchew et al. 2017, JGR)



Preview of presentation: methodology 
1. Polarimetric radar-sounding measurements  

(ApRES) &  coherence analysis
2. Modeling radar constraints on 

anisotropic ice rheology
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ApRES Image 
from Nichols et 

al. 2015, J. Glac.



Preview of presentation: results
4.  Radar bounds on anisotropic ice rheology3. Spatial variability in fabric within Rutford

Along-flow 
extension/
compression 
softer than 
across-flow

Along-flow 
extension/
compression 
softer than shear

Ice flow 
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1. Polarimetric radar-sounding measurements & data analysis  

2.  Modelling radar constraints on anisotropic ice rheology

3. Spatial variability in ice fabric within Rutford Ice stream

4.  Radar bounds on anisotropic ice rheology

5.  Summary
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1.1 Glaciological setting and measurement sites 

A

A’

B’

B

Ice-flow 
direction 

Data consists of two transects of 
10 measurement sites in Rutford
Ice Stream, West Antarctica. 
Collected as part of the NERC 
BEAMISH project.

Transect A: tangential to ice-
flow, begins at central stream-
and heads towards shear margin 

Transect B: parallel to ice-flow 
along central streamline

Quad-polarimetric acquisitions 
using an ApRES (Autonomous-
phase sensitive radio echo 
sounder). 



1.2 Polarimetric data analysis

Based upon polarimetric coherence methodology (Dall 2009 & Jordan et al.  2019)  where depth-azimuth 
properties of hhvv coherence phase & vertical gradient are used to extract girdle properties

Refinements to previous methodology: basis transform from quad-polarized to `multi-polarization plane’ 
data, incorporation of antenna alignment uncertainty, improved automation.



1.3 Polarimetric backscatter model

Forward model of hhvv phase for radio propagation & backscatter in a birefringent ice-sheet (Fujita et al. 2006, Jordan et 
al. 2019) used to constrain polarimetric data analysis. 

Model indicates that fabric eigenvectors can be determined from azimuthal angle that maximize 180-degree azimuthal 
reflection symmetry of hhvv phase. This property holds exactly for depth-invariant fabric or 90 degree rotations in the 
ice column (Disclaimer:  non 90-degree rotations result in reflection-symmetry breaking & fit biases).

hhvv phase & gradient for
depth-invariant orientation (anisotropic scattering)

hhvv phase & gradient for 90 deg 
azimuthal rotations (isotropic scattering)



1.4 Polarimetric data 
analysis: Transect A A1

A7

A9

When interpreting spatial patterns focus on 
high coherence band in the near-surface: 
40 < z<  90 m (indicated by green box
in top plot).

Blue & red lines indicate E1 and E2 
eigenvectors as a function of ice depth. Filter 
out poorer fits and low coherence regions.

Transparency of phase and phase gradient 
plots indicates coherence strength..

A1

A7

A9
Ice-flow 
direction 



1.5 Polarimetric data 
analysis: Transect B

Upstream sites 
(B8-B10) indicate 
rapid depth-
transition in fabric 
orientation (~90 
degrees) at z~ 
100m  Focus on 
two `depth units’ 
when comparing 
sites (green and 
black boxes in 
bottom plot).

Downstream sites 
(B1-B7) have no 
depth-transition.

B6

B8

B10

B

B’
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2.1 Girdle-pole decomposition of fabric eigenvalue space

G is measured by radar
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The pole strength (and set of three eigenvalues) is better constrained for greater girdle strengths

A

B

C

D

A
Upper bound on 

P for G=0.2 
(E1=0,

E2=0.1, E3=0.9)

B C
Upper bound on 

P for G=0.8 
(E1=0,

E2=0.4,E3=0.6)

Prior step to rheological 
modelling is to define fabric 
parameter-space in terms 
of what we can/cannot 
measure.

Assume fabric eigenvalue 
convection E3>E2>E1  with 
E3 vertical. E3+E2+E1=1, 
means we reduce to 2 DOF: 
pole (P) & girdle strength 
(G) defined on [0,1]

Lower bound on 
P for G=0.2 
(E1=0.267, 

E2=E3=0.367)

Lower bound on 
P for G=0.8 
(E1=0.067, 

E2=E3=0.467) 

D



2.2 Rheological modelling: effect of girdle strengthening 
Girdle strengthening results 
in `anisotropy of
uniaxial deformation’ 
(ψ1111 decreases and 
ψ2222 increases with G). 

Cannot constrain shear with 
radar as contours are ~ 
horizontal (i.e. shear is 
function of pole strength).

Anisotropic flow law for linear orthotropic rheology D: strain 
rate, ψ: fluidity (viscosity inverse) , S: deviatoric stress  (Gillet 
Chaulet et al. 2005, J Glac., Martin et al. 2009, JGR)

Horizontal fluidity components: principal coordinates (x1,x2)

G is measured by radar
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Uniaxial horizontal fluidity components: ice-stream coordinates (x,y)

Girdle rotation results in `hard’ (x1) and `soft’ (x2) uniaxial strain directions changing with respect to 
ice-stream coordinates (x,y). Note: rotation transform has negligible effect on shear.

Consider rotational transform of fluidity tensor from principal (x1,x2) to ice-
stream coordinate system (x,y) 

Convention: when θflow=0 degs x2 (girdle plane) is aligned with x (flow).

0 km

Along flow (x)

Across 
flow (y)

x2

x1

θflow

2.3 Rheological modelling: effect of girdle rotation



3.1 Spatial variation in ice fabric: Transect A

A A’

*Fabric results are depth-averaged 
on 40 < z < 100 m. 

Girdle strength increases with compression
magnitude

Overall tendency for girdle-alignment with 
compression axis. (When theta=0 degs, fabric 
and compression axis are aligned with flow) 

A

A’

Ice-flow 
direction 

Ice-flow 
direction 



3.2 Synthetic c-axis distributions: Transect A

0 km
4.1 km (A3) 8.0 km (A7)

Along flow (x)

Across 
flow (y)

Fabric 
(E2 eigenvector)

Angle convention

Plots consider max and min pole bounds using azimuthal equal area projection. They
demonstrate combined effect of girdle rotation & strengthening.

c-axis distribution is better constrained toward shear-margin where girdle strength is higher

0 km  (A1) 8.5 km (A9)



B

`Near-surface’ fabric (40 < z < 90 m) approximately aligned with 
surface compression axis. Correlates with transition from along 
–flow compression (downstream region) to across –flow 
compression (upstream region).

Fabric in `deeper ice’ (120 < z < 170 m) always aligned along-
flow

3.3 Spatial variation in ice fabric: Transect B
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24 km 28  km 36 km

3.4 Synthetic c-axis distributions: Transect B

12 km 0 km

Along flow (x)

Across 
flow (y)

Fabric 
(E2 eigenvector)

Angle convention
Measurements 
at 28 & 36 km 
show 90-degree 
azimuthal 
rotation within 
the ice column!



4.1 Anisotropy in ice rheology due to fabric
Transect A: near-surface layer Transect B: deeper iceTransect B: near-surface layer

Along-flow `softer’ than across-flow Across-flow `softer’ than along-flow

Along-flow ‘softer’ than shear Across-flow `softer’ than shear

Along-flow `softer’ than across-flow

Along-flow `softer’ than  shear



4.2 Comparison of near-surface rheology and ice surface deformation 
Purple region (upstream section of 
transect B)
• Fluidity is greater across-flow 

than along-flow  (ψyyyy >
ψxxxx)

• Fluidity is greater across -flow 
than shear (ψyyyy > ψxyxy)

Green regions (transect A and 
downstream section of transect B)

• Fluidity is greater along flow 
than across-flow (ψxxxx>
ψyyyy)

• Fluidity is greater along flow 
than shear (ψxxxx> ψxyxy)

*Note: summary for green regions 
holds for purple regions in deeper 
ice z>120 m.



Summary (i) : radar fabric measurements

• Radar measurements indicate that vertical girdle fabrics with variable azimuthal
orientation and strength are present in shallower ice within Rutford ice stream.

• Nearer to the ice surface ( ~ 40 < z < 100 m) the girdle plane has overall tendency to align
with the surface compression axis. In deeper ice ( ~ 100 < z < 200 m) the girdle plane
can be both well-aligned with the near-surface fabric or can be azimuthally rotated
(extreme case ~ 90 degrees).

• In the near-surface girdle strength generally increases with compressive strain
magnitude; notably toward the shear-margin.



Summary (ii) : fabric influence on rheology

• Rheological modelling reveals that the girdle fabrics result in spatially-variable horizontal
anisotropy in ice rheology within the Rutford ice stream.

• Girdle ice is softer to uniaxial deformation in the direction of the girdle plane, which can result
in relative enhancement of along-flow to across-flow deformation (and vice-versa). Due to
girdle alignment with the compression axis, this could act as a positive dynamic feedback when
ice is undergoing compression.

• When there is azimuthal fabric rotation in the ice column, different ice depths have uniaxial
deformation enhanced in different directions (e.g. across-flow in the near-surface and along-
flow in deeper ice). In this scenario, the surface deformation regime could substantially differ
from underlying ice.

• Girdle ice is generally softer to uniaxial deformation than horizontal shear, particularly in the
direction of the girdle plane. Consequently, changes in girdle strength near to the shear-margin

do not enhance horizontal shear relative to uniaxial deformation.
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