Predictive skill of atmospheric rivers in the Iberian Peninsula

Alexandre M. Ramos(1), Pedro M. Sousa(1), Emanuel Dutra(1), Ricardo M. Trigo(1)

(1) Instituto Dom Luiz (IDL), Universidade de Lisboa, Portugal
amramos@fc.ul.pt

Motivation

- Heavy precipitation and floods along the west coast of Europe are largely caused by intense water vapor transport within the ARs.

- Early awareness of extreme precipitation, can provide the time necessary to make adequate event preparations.
Atmospheric Rivers

A long (~2000 km), narrow (~850 km), and transient corridor of strong horizontal water vapor transport that is typically associated with a low-level jet stream ahead of the cold front of an extratropical cyclone. The water vapor in atmospheric rivers is supplied by tropical and/or extratropical moisture sources. Atmospheric rivers frequently lead to heavy precipitation where they are forced upward—for example, by mountains or by ascent in the warm conveyor belt.

AMS, Glossary
Motivation

Flash Flood Event in Madeira 20 February 2010

24h precipitation
Dataset & Methods

Only interested in potential ARs events:

- Days with mean IVT value inside box > 450 kg/m/s;

Iberian Peninsula

(200 events)
Only interested in potential ARs events:

• Days with mean IVT value inside box > 450 kg/m/s; 

Iberian Peninsula

The operational and 50 perturbed ensemble members (out to forecast day 15) from the ECMWF ensemble prediction system, were retrieved for the 00UTC and 12UTC initialization for:


• IVT (intensity and direction);

• Horizontal resolution of 0.25° x 0.25°
Dataset & Methods

For the days with mean IVT value inside a box > 450 kg/m/s, we compared the analysis for AR events (at 00 UTC or 12 UTC) against the forecasts made in previous days (-24h, -48h,...-336h) using the following metrics:

- the location (latitude) of the observed/predicted AR axis (maximum IVT) – Landfall distance
- the intensity (mean IVT in the box) at the latitude of observed/should have been predicted – Landfall IVT Error

Ramos et al., 2020
ARs Predictability Iberian Peninsula

Example

04 Jan-2016 12UTC - Analysis

Evolution of the Operational RUN Forecast

- run: 20160103-12 +24h (day -1)
- run: 20160102-12 +48h (day -2)
- run: 20151231-12 +96h (day -4)
- run: 20151230-12 +120h (day -5)
- run: 20151229-12 +144h (day -6)
- run: 20151228-12 +168h (day -7)
- run: 20151227-12 +192h (day -8)
- run: 20151226-12 +216h (day -9)
- run: 20151225-12 +240h (day -10)
- run: 20151224-12 +264h (day -11)
- run: 20151223-12 +288h (day -12)
- run: 20151222-12 +312h (day -13)
- run: 20151221-12 +336h (day -14)

Ramos et al., 2020
ARs Predictability Iberian Peninsula

04 Jan-2016 12UTC – Ensemble Forecast

Ramos et al., 2020
ARs Predictability Iberian Peninsula

Mean of all operational forecasts (200 events)

Errors in Iberian AR landfall - ENSEMBLE run up to day 14 forecast

ENSEMBLE FORECAST – 200 cases x 50 Members

Ramos et al., 2020
ARs Predictability Iberian Peninsula

All operational forecasts (200 events)

Contingency tables for Iberian ARs

Ramos et al., 2020
Final Remarks

- It seems that there is some predictability on the characteristics of the ARs affecting the Iberian Peninsula.

- The location and intensity of the AR landfall position, are well predicted until forecast day 5 and lower when going to longer forecast periods;

- At longer forecast times detail is lost regarding the specific latitude of the landfall, but there is still good predictability for potential ARs occurring in the Iberian Peninsula;

- ARs tend to be forecasted further north than observations in Iberia as forecast times increase;

- Mean IVT values tend to be underestimated for longer range forecasts;

- The use of the ensemble forecast, along with knowledge of systematic errors/biases, will be useful for the probabilistic forecast of the location and intensity of the ARs;

Ramos et al., 2020
Acknowledgments

The work done was supported by the project Landslide Early Warning soft technology prototype to improve community resilience and adaptation to environmental change (BeSafeSlide) funded by Fundação para a Ciência e a Tecnologia, Portugal (FCT, PTDC/GES-AMB/30052/2017). A.M.R. was also supported by the Scientific Employment Stimulus 2017 from FCT (CEECIND/00027/2017).