Late Holocene climate variability in the Western Carpathians (East-Central Europe) reconstructed from ice cores records

Aurel Perșoiu, Carmen Bădăluță

Emil Racoviță Institute of Speleology
Ice accumulation in caves

1. Glacial ice intrusion
2. Hoar frost accumulation
3. Snow firnification
4. Water freezing
Ice accumulation in caves

1. Glacial ice intrusion
2. Hoar frost accumulation
3. Snow firnification
4. Water freezing
Ice accumulation in caves

Source of impurities:

Allochthonous (organic matter) → Autochthonous (cryogenic calcite)

1 2 3 4 5 6 7
Scărișoara Ice Cave

1165 m asl, 700 m long, -105 m MAT ~5 °C outside, 0 °C inside

~10,000 years old (26 ¹⁴C ages)
δ¹⁸O proxy for autumn/early winter air temperature

Better than decadal resolution for the last 2k years

Multidecadal resolution for the entire Holocene
Holocene winter climate variability in Central and Eastern Europe

Aurel Perșoiu1,2, Bogdan P. Onac1,3, Jonathan G. Wynn3, Maarten Blaauw4, Monica Ionita5,6 & Margareta Hansson7

Among abundant reconstructions of Holocene climate in Europe, only a handful has addressed winter conditions, and most of these are restricted in length and/or resolution. Here we present a record of late autumn through early winter air temperature and moisture source changes in East-Central Europe for the Holocene, based on stable isotopic analysis of an ice core recovered from a cave in the Romanian Carpathian Mountains. During the past 10,000 years, reconstructed temperature changes followed insolation, with a minimum in the early Holocene, followed by gradual and continuous increase towards the mid-to-late-Holocene peak (between 4-2 kcal BP), and finally by a decrease after 0.8 kcal BP towards a minimum during the Little Ice Age (AD 1300–1850). Reconstructed early Holocene atmospheric circulation patterns were similar to those characteristics of the negative phase of the North Atlantic Oscillation (NAO), while in the late Holocene they resembled those prevailing in the positive NAO phase. The transition between the two regimes occurred abruptly at around 4.7 kcal BP. Remarkably, the widespread cooling at 8.2 kcal BP is not seen very well as a temperature change, but as a shift in moisture source, suggesting weaker westerlies and increased Mediterranean cyclones penetrating northward at this time.
before ~6,000 cal BP

after ~6,000 cal BP

Scărișoara

Scărișoara

Perșoiu et al., 2017, Sci. Rep
Stable isotopes in cave ice suggest summer temperatures in East-Central Europe are linked to AMO variability

Carmen-Andreea Bădăluță1,2,3, Aurel Perșoiu4,5, Monica Ionita5, and Natalia Piotrowska6

1Stable Isotope Laboratory, Ștefan cel Mare University, Suceava, 720229, Romania
2Department of Geography, Ștefan cel Mare University, Suceava, 720229, Romania
3Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences MTA, Budapest, 1112, Hungary
4Emil Racoviță Institute of Speleology, Romanian Academy, Cluj Napoca, 400006, Romania
5Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, 27515, Germany
6Institute of Physics, Silesian University of Technology, Gliwice, 44-100, Poland
Temporal variability of the Atlantic Multidecadal Oscillation instrumental index, air temperature (anomalies with respect to the 1961-1990 period) recorded at Baia Mare (BM), Timișoara (TM) and Sibiu (SB) meteorological stations and FV δ¹⁸O and δ²H (‰) during the instrumental period. The positive (red) and negative (blue) anomalies are shown against the 1850-2000 averages for the FV values.
Summer climatic conditions recorded by δ^{18}O and δ^2H from FV ice core (panels f and g, bottom) and comparison with proxy indicator from the Northern Hemisphere: a) Total Solar Radiation (Steinhilber et al., 2009), b) Central Europe summer temperature anomalies (against the 1901-2000 mean, Buntgen et al., 2011); c) Northern Hemisphere air temperature anomalies (against the 1961-1990 mean, D’Arrigo et al., 2006), d) Tree Ring width index from Albania, SE Europe (Seim et al., 2012), e) Summer temperature anomalies in Romania (against the 1961-1990 mean, Popa and Kern, 2009).
The analysis of d18O values indicate that on centennial scales, air temperature variability during the last 1000 years was controlled by changes during the winter season, summer temperatures being relatively constant (on these time scales). Contrary, short-term variability (decadal to multi-decadal) was well expressed in both seasons. In summer, the main controlling factors seem to be changes in solar radiation and possibly in the strength of the Atlantic Multidecadal Oscillation, while in winter, the strength of the Siberian High could have acted as the main forcing factor.