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SUMMARY METHODS
» A long-term (850-2100) simulation was performed with the Community Earth System Model (CESM

1.0.1), using a modified reconstruction of total solar irradiance, volcanic forcing and the RCP8.5 forcing
» \We analyzed the long-term links between the Integrated Vapor scenario (Fig.1);

Transport (IVT) and precipitation regime Changes IN WWestern Eur()pe » VT fields were computed and compared against precipitation and surface temperature series for the
entire domain (Fig.2) and for regional boxes in the UK and Iberia (Figs. 3 and 4) for extended winter

» A clear link with near-surface temperatures is found, being this (October-March),
particularly notable for the Post-lndustrial perigd, and expected to » Changes in Circulation Weather Types (CWTs, Fig.5) and large-scale dynamical VS thermodynamical

_ changes in circulation where analyzed (Fig.6);
exacerbate further due to Global Warming, to unprecedented levels. | | | | o
» These circulation features were compared with frequency and preferred location of Atmospheric Rivers

» However rainfall regime responses are dissimilar for regional (ARs) and associated moisture corridors, explaining projected regional rainfall changes (Fig.7),
domains. While in the UK rainfall increases along with IVT, for |beria it
decreases considerably. Moreover the relatively steady link at decadal
and multi-decadal scales between IVT and precipitation, for UK and

North Atlantic Integrated Water Vapor Transport—From 830 to 2100 CE: Impacts

Iberia, appears to be lost in Iberia along the 215t century. on Western European Rainfall?

| | o | Paper published In
» Taking all the above into account, the combination of the following P P B

mechanisms should explain these projections: Journal of Climate O e o e e P P

RicarRDD TOME

| JANTIARY XA SOUSA ET al.

Tnsonwo Do Lz, Facwldade de Cidneias, Univesidade de Lishoa, Lishon, Portegal

1) Increase in UK precipitation due to the increase of westerly (Sgusa et al., 2020)

Inginge of Mereorology and Clhniare Research, Karlsnike Tnsinge of Technology, Karlrihe, Germany

Circulation Weather Types (CWTs) in Northern Europe combined with © ReawwoM T
enhanced moisture availablility in a warmer atmosphere; '

Incongo de Geoclénelrs, Universidade Federal do Rio de Janeiro, Rio de Taneinn, Brazil

DOI: 10.1175/JCLI-D-19-0348.1

ABSTRACT

2) Decrease In lberian precipitation due to an increase in the ke it Al Ot i e

and variahility over western Europe. To assess its bong4erm variahility, the vertically inteprate eontal water vapo
transport (T T) from a long-term climaie simulationspanning the pefod S50-2100CE was wsed. Results show a steady
u u . u u increase in mosture transport towand western Burope since the lake-ninctoe nth acntury that is projected to expand
fre q u e n Cy Of Sta b I e CWTS CO m b I n e d W Ith h I g h e r Wate r reta I n I n g duning the twenby-first century under the RCPES scenanio. The projectied IVT for 200049 significantly excoeds the
J mnEe given by interannual-interdecadal variability of the last millennium. Changes in IVT are in lne with sien ficanm

increasos in tropesphenc moisture content, driven by the concurment rise in surface temperatures associated with the
n u n amthropogenic climate rend. On regomal scales, recent and projocted precipitation changes over the Brtish Bles follow

Ca paCIty Of a Wa rmer atmOSphere desplte en hanced mOIStu re the glolal positive IVT trend, whereas a rohbust precipitation decrease over Theria i identified in the twentby-firs
) century, partcularly during autumn. This indicates a possible extension of stable and dry summer conditions and a

decoupling betwoen moisture availability and dynamical forcing. The imestigation of circulation features reveals a
. - = mecan pokewanrd shift of mosture comdors and ssodated atmospheric rivers. In particular, in Thena, a sienifican
ava I I a b I I Ity increase in the frequency of dry weather types s observed, accompanied by a docresse in the froquenoy of wet typos. An
. opposite response & observed onerthe Botsh Bles. These duanpges imply a stronger mendional north-south dipae in

terme of pressure and proecipitation distnbutions, enhancing the transpornt toward central Ewrope rather than to Thena.

l. Introduction
& Supplemental information related to this paper isavailable ai

» \We also show how the expansion of the subtropical high pressure
belt leads to a poleward shift of moisture corridors and of Atmospheric a0 T e ity and it ocation f vt vpor

transport. In thas context, atmospheric nvers [ ARs; Zhu

*"Cument affiliation: School of Earth Scicmoes, Univemsity of and Newell 1998 Naman et al. 2008 Dettineer et al.

Rive rS i n the N Orth AtlantiC. Melbourne, Melbourne, Victoria, Australia 2015), that is, a narrow band or corridor of high verti-

cally mtegrated hornzontal water vapor transport (IVT),
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Fig.3 — Long-term variability of the IVT and temperature anomalies in the UK and Iberia. Straight thick lines represent the estimated period
of emergence of the signals, by considering the exceedance of the maximum pre-industrial variability (and two-fold).
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Fig.4 — Same as Fig.3, but for IVT and precipitation series.
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Fig.5 a) Changes in the frequency of Circulation Weather Types (CWTs) for the British Isles during extended ! 50 N T
winter months (October-March) throughout the long-simulation period. Directional weather types are | ’ rainta
grouped according to typical coherent surface responses. The thicker curves highlight changes occurring 300 1 | O changes due
during the 21st century. A 30-year running mean has been applied to the series. b) Daily precipitation (mm : 40 N “ . to ARs
I

per day) associated to each group of CWTs: darker bars refer to the 1981-2010 climatology, and lighter bars

to the 2070-2099 projected climatology. ¢) Changes (2070-2099 minus 1981-2010) in total extended winter O o O O o O O o

precipitation associated to each group of CWTs, and the overall net change (TOTAL). d), e) and f): Same as 900 »\000 /\’\00 \‘7,00 \’500 /\AQQ »\600 \600 J\’IQQ \%00 1\900 7,000 q,’\QQ 40 W30 W20 W10 W 0O 10 E 20 E 30 E
a), b) and c¢), but for Iberia.
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Fig.7 — Statistics for ARs in the North Atlantic crossing the 10°W meridian during extended winter. a), b) and c) Boxplots for the frequency of
occurrence of ARs in 5° latitudinal windows, for the pre-industrial, present and future climates, respectively. d) Dashed line shows the
difference between c) and b), and bars represent future changes in CWTs during ARs for each regional box - shaded areas highlight the
latitudes where the British Isles and Iberia are located. €) Mean intensity of ARs crossing the 10°W meridian throughout the entire simulation.
The envelope corresponds to 1std. f) Spatial changes in mean daily precipitation during days with ARs.
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