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Coastal squeeze: a global challenge

‘Coastal squeeze is one form of coastal
habitat loss, where intertidal habitat is
lost due to the high water mark being
fixed by a defence or structure (i.e. the
high water mark residing against a hard
structure such as a sea wall) and the low
water mark migrating landwards in
response to SLR.” (Pontee, 2013).
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Ecosystem services of coastal wetlands

* Coastal protection:
- Wave and surge attenuation (Gedan et al., 2011; Mdller et al., 2014)
—> Protection against coastal erosion

» Carbon sequestration/storage:
—> Burial rates exceed those of terrestrial ecosystems (McLeod et al., 2011)
—> Potential carbon emissions where wetland are eroded.

~ * Habitat provisioning




Global Coastal Wet

Coastal profiles

— Based on floodplain data from
DIVA database (Hinkel et al., 2014)
Coastal profile construction,
following Vafeidis et al., 2019
Inland migration as a function of
coastal topography and sea-level
rise (SLR; Schuerch et al., 2018)
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t h re S h O | d Population density
threshold (people km-2)
Sea level Lower Upper
SLR scenario|2100 (cm) JAccommmodation space scenario |boundary |boundary
Business-as-usual (BAU) 5 20
Low: RCP 29 Managed realignment (MR) 1 20 150
2.6 (5%) Managed realignment (MR) 2 150 300
Sediment acc. only (HYS 2) 0 oo
Business-as-usual (BAU) 5 20
Medium: Managed realignment (MR) 1 20 150
RCP 4.5 50 Managed realignment (MR) 2 150 300
(50%) Sediment acc. only (HYS 2) 0 oo
No resilience (HYS 4) 0 oo
Business-as-usual (BAU) 5 20
High: Managed realignment (MR) 1 20 150
RCP 8.5 110 Managed realignment (MR) 2 150 300
(95%) Sediment acc. only (HYS 2) 0 oo
No resilience (HYS 4) 0 oo
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* Critical sediment supply:
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— Critical relative SLR (Kirwan et al., 2010)
— Translated into critical sediment supply as
function of relative SLR and tidal range
— Seaward wetland loss occurs where actual
sediment supply < crit. sediment supply



Baseline results

Relative wetland
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* Most coastal wetlands (tidal (salt and freshwater) marshes and

mangroves) globally do not have the capacity of accrete sediment under
high SLR scenarios.

* Not accounting for inland migration may lead to global wetland losses
between 20 and 54 % (depending on the sea-level rise scenario.

* Coastal squeeze is likely to be a global-scale problem.

(© Authors. All rights reserved)



Scenario analysis
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Accounting for inland migration
increases global coastal wetland
areas by:

* BAU: 12-47% (of original area) for
business-as-usual scenario

* 20-97% (of original area) for
moderate coastal retreat scenario

e 32-114% (of oriFinaI area) for
extreme coastal retreat scenario
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Schuerch et al. (2018), modified

for

wetland inland

migration reduces
lobal wetland

oss for all sea-

level rise scenarios

An increase in
global wetland
area is possible
where nature-
based adaptation
(e.g. managed
realignment) is
implemented on a
large-scale

Simulated global area increase (in % of original area)
compared to baseline scenario

RCP 2.6 - 5%

RCP 4.5 - 50%

RCP 8.5 - 95%

Pop. density
threshold 5 11.8 14.2 24.2
Pop. density
threshold 20 19.7 25.2 46.9
Pop. density
threshold 150 31.7 41.4 96.9
Pop. density
threshold 300 34.6 45.8 114.1



Discussion/conclusions

Through vertical sediment accretion, coastal wetlands are unlikely to keep up with global SLR,
particularly for high-end scenarios.

Global coastal wetland loss through coastal squeeze is avoidable, if nature-based solutions to coastal
management (e.g. managed realignment) are consequently implemented.

Inland migration/managed realignment may be accompanied by the loss of long-standing wetlands,
replacing them with young, potentially short-living ecosystems.

This raises questions about the continued delivery of associated ecosystem services, such coastal
protection, habitat provisioning and carbon sequestration (e.g. Mossman et al., 2012).
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Managed realignment (Freiston Shore, UK East coast)
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