The effect of the addition of 13C labelled artificial root exudates on carbon cycling in intact peat bog mesocosms

Stephan Glatzel1, Andreas Maier1, Claudia Blauensteiner1, Erich Inselsbacher1,2, Karsten Kalbitz3, Robert Peticzka1, Gang Wang1,4 and Raphael Müller1

1 Faculty of Geosciences, Geography, and Astronomy, University of Vienna, Austria
2 Institute of Soil Research, University Natural Resources and Life Sciences, Vienna, Austria
3 Institute of Soil Science and Site Ecology, TU Dresden, Germany
4 College of Biological and Agricultural Engineering, Jilin University, Changchun, China

© Authors. All rights reserved
Problem:

• Do root exudates enhance peat decomposition?
• What is the fate of root exudates in acidic bog peat?

Experiment:

• Addition of artificial root exudates (99% 13C-glucose, amino acid and acetic acid into intact peat cores)
• Monitoring of release of 12CO$_2$, 12CH$_4$, 13CO$_2$, 13CH$_4$
• Repeated DOC sampling in 5, 15, and 25 cm depth and analysis of DOC and DO13C concentration
• Analysis of peat for 13C content following the experiment
Results Peat:

Strong accumulation of label in depth of injection 3 weeks after labelling: 20.25% of added 13C

δ^{13}C of peat (mean and SD)
Results CO₂ and CH₄:

Substantial evolution of added 13C as ¹³CO₂ and ¹³CH₄:

31.31% of added ¹³C
Results DOC:

- highest DOC concentration at 15 cm depth (rhizosphere) indicates immobile DOC
- up to 20% 13DOC in 15 depth! (made further analyses impossible for a while)
Summary:

140 mg of injected 13DOC did not enhance peat decomposition

After 3 weeks, of injected artificial labelled root exudates...

- probably up to 50% remained in solution in the depth of injection
- 20% were found in peat in the depth of injection
- 30% were released as CO$_2$ and CH$_4$

⇒ DOC in the examined bog peat is remarkably immobile and stable