Relaxing the initial model constraint for crustal-scale full waveform inversion with graph space optimal transport misfit function

A. Gorszczyk1,2, L. Metivier1,3, R. Brossier1

EGU 2020 Sharing Geoscience Online, 08 May 2020

1Univ. Grenoble Alpes, ISTerre, Grenoble, France
2Institute of Geophysics, PAS, Warsaw, Poland
3Univ. Grenoble Alpes, CNRS, LJK, Grenoble, France
Crustal-scale FWI of the OBS data

OT-based misfit function

Synthetic test

Results

Conclusion
Crustal-scale FWI of the OBS data

OT-based misfit function

Synthetic test

Results

Conclusion
Crustal-scale velocity reconstruction

- MCS data:
 - Short streamer - limited depth-penetration
 - 3D wavefield scattering from complex structures
 - Need for illumination from the deep part of the model

- OBS data:
 - Wide-angle data for deep illumination
 - Refracted waves and wide-angle reflections undershooting the structure
 - Dense nodes increasing the data redundancy

GO_3D_OBS model
Crustal-scale velocity reconstruction

MCS data:
- Short streamer - limited depth-penetration

GO_3D_OBS model
Crustal-scale velocity reconstruction

MCS data:
- Short streamer - limited depth-penetration

GO_3D_OBS model
Crustal-scale velocity reconstruction

MCS data:
- Short streamer - limited depth-penetration
- 3D wavefield scattering from complex structures

GO_3D_OBS model
Crustal-scale velocity reconstruction

MCS data:

- Short streamer - limited depth-penetration
- 3D wavefield scattering from complex structures
- Need for illumination from the deep part of the model
Crustal-scale velocity reconstruction

MCS data:
- Short streamer - limited depth-penetration
- 3D wavefield scattering from complex structures
- Need for illumination from the deep part of the model

OBS data:
- Wide-angle data for deep illumination
Crustal-scale velocity reconstruction

MCS data:
- Short streamer - limited depth-penetration
- 3D wavefield scattering from complex structures
- Need for illumination from the deep part of the model

OBS data:
- Wide-angle data for deep illumination
- Refracted waves and wide-angle reflections undershooting the structure

GO_3D_OBS model
Crustal-scale velocity reconstruction

MCS data:
- Short streamer - limited depth-penetration
- 3D wavefield scattering from complex structures
- Need for illumination from the deep part of the model

OBS data:
- Wide-angle data for deep illumination
- Refracted waves and wide-angle reflections undershooting the structure
- Dense nodes increasing the data redundancy

GO_3D_OBS model
Challenge - large models constrained by sparse (but diverse) data

(Górszczyk et al., 2017)
Problem

- Precision of picking and prediction of first arrivals determines occurrence of cycle-skipping
 - The criteria is difficult to fulfil
 ⇒ far offsets
 ⇒ long time of propagation
 ⇒ more wavelets to propagate
 ⇒ accumulation of error
 ⇒ higher probability of cycle-skipping (Pratt, 2008)
- Lack of information about the later arrivals

Solution

⇒ extract more information to constrain better tomographic model
⇒ use more convex misfit function able to mitigate cycle-skipping issue
Crustal-scale FWI of the OBS data

OT-based misfit function

Synthetic test

Results

Conclusion
Recently Optimal Transport has been proposed to design more convex misfit functions.

- OT distance looks for an optimal mapping M between synthetic and observed data

\[
c_{ij} = |t_i - t_j|^2 + |\eta (d_{cal,i} - d_{obs,j})|^2; \quad \eta = \frac{\tau}{A}
\]

- OT is convex with respect to shifted patterns - proxy to convexity with respect to wave velocities

(Métivier et al., 2019)
• Comparison of two Ricker functions
• The gray arrows represent the assignment of the corresponding samples when small time-shift is used
 (Métiévier et al., 2019)
• Comparison of two Ricker functions
• The gray arrows represent the assignment of the corresponding samples when large time-shift is used (Métivier et al., 2019)
GSOT for FWI

- **QUESTION**: Can we combine GSOT with proper data selection to relax the cycle-skipping constraint on the initial FWI model?

(Métivier et al., 2019)
Crustal-scale FWI of the OBS data

OT-based misfit function

Synthetic test

Results

Conclusion
Experimental setting - GO_3D_OBS model

- Subduction zone
- 30 km × 175 km
- 72 OBS - 2 km spc.
- 1500 SP - 100 m spc.
- 2Hz Ricker wavelet
- 20 s propagation
Experimental setting - GO_3D_OBS model

- Subduction zone
- 30 km × 175 km
- 72 OBS - 2 km spc.
- 1500 SP - 100 m spc.
- 2Hz Ricker wavelet
- 20 s propagation
- 1D initial model
- Clear cycle-skipping
Experimental setting - GO_3D_OBS model

- Subduction zone
- 30 km × 175 km
- 72 OBS - 2 km spc.
- 1500 SP - 100 m spc.
- 2Hz Ricker wavelet
- 20 s propagation
- 1D initial model
- Clear cycle-skipping
- TD acoustic FWI
- LBFGS optimization
- Density const. or true
- Single frequency band
- 3 time-windows
- MPI over OBS
Population of the V_α models generated according to formula:

$$V_\alpha = V_{true} + \alpha^2 (V_{init} - V_{true})$$

where $-1 \leq \alpha \leq 1$.
Outline

Crustal-scale FWI of the OBS data

OT-based misfit function

Synthetic test

Results

Conclusion
Model and data evolution

STAGE 1 - 50 it.
• TW 0.2s + 0.5s taper
• Normalized amplitude
• Strong smoothing

STAGE 2 - 20 it.
• TW 0.2s + 0.5s taper
• True amplitude
• Moderate smoothing

STAGE 3 - 150 it.
• TW 0.2s + 9s taper
• True amplitude
• Small smoothing

STAGE 4 - 150 it.
• Full time
• True amplitude
• Small smoothing
Model and data evolution

STAGE 1 - 50 it.
- TW 0.2s + 0.5s taper
- Normalized amplitude
- Strong smoothing

Iteration 10
Model and data evolution

STAGE 1 - 50 it.
- TW 0.2s + 0.5s taper
- Normalized amplitude
- Strong smoothing
Iteration 20
Model and data evolution

STAGE 1 - 50 it.
- TW 0.2s + 0.5s taper
- Normalized amplitude
- Strong smoothing

Iteration 30
STAGE 1 - 50 it.
- TW 0.2s + 0.5s taper
- Normalized amplitude
- Strong smoothing

Iteration 40
Model and data evolution

STAGE 1 - 50 it.
- TW 0.2s + 0.5s taper
- Normalized amplitude
- Strong smoothing

Iteration 50

STAGE 2 - 20 it.
- TW 0.2s + 0.5s taper
- True amplitude
- Moderate smoothing

STAGE 3 - 150 it.
- TW 0.2s + 9s taper
- True amplitude
- Small smoothing

STAGE 4 - 150 it.
- Full time
- True amplitude
- Small smoothing
Model and data evolution

STAGE 1 - 50 it.
- TW 0.2s + 0.5s taper
- Normalized amplitude
- Strong smoothing

STAGE 2 - 20 it.
- TW 0.2s + 0.5s taper
- True amplitude
- Moderate smoothing

STAGE 3 - 150 it.
- TW 0.2s + 9s taper
- True amplitude
- Small smoothing

STAGE 4 - 150 it.
- Full time
- True amplitude
- Small smoothing
Model and data evolution

STAGE 1 - 50 it.
- TW 0.2s + 0.5s taper
- Normalized amplitude
- Strong smoothing

STAGE 2 - 20 it.
- TW 0.2s + 0.5s taper
- True amplitude
- Moderate smoothing

STAGE 3 - 150 it.
- TW 0.2s + 9s taper
- True amplitude
- Small smoothing
STAGE 1 - 50 it.
- TW 0.2s + 0.5s taper
- Normalized amplitude
- Strong smoothing

STAGE 2 - 20 it.
- TW 0.2s + 0.5s taper
- True amplitude
- Moderate smoothing

STAGE 3 - 150 it.
- TW 0.2s + 9s taper
- True amplitude
- Small smoothing

STAGE 4 - 150 it.
- Full time
- True amplitude
- Small smoothing
Model and data evolution

TRUE MODEL
FINAL MODEL: \sim400 iterations; \sim30 hours; 3 nodes; 72 cores
Outline

Crustal-scale FWI of the OBS data

OT-based misfit function

Synthetic test

Results

Conclusion
• GSOT-based FWI can significantly reduce the constrain on the accuracy of initial FWI model
• Traveltimes defining mute window can be approximate and not precise - less problematic picking
• Multiscale FWI strategy and proper data-selection seem still obligatory
• Challenges for real data application - accurate source estimation, elastic effects, noise
• Future development - extensions from trace-by-trace to 2D misfit
GO_3D_OBS model
• SEISCOPE sponsors (http://seiscope2.osug.fr):
 AKERBP, CGG, CHEVRON, EXXON-MOBIL, JGI, PETROBRAS, SCHLUMBERGER, SHELL,
 SINOPEC, STATOIL and TOTAL

• National Science Centre (grant no. UMO-2019/33/B/ST10/01014)

• Université Grenoble Alpes, UGA https://univ-grenoble-alpes.fr

• Institute of Geophysics, Polish Academy of Sciences, IG PAS https://igf.edu.pl

• CYFRONET (Prometheus) computing center http://kdm.cyfronet.pl
