Dust and pyrogenic iron boost phytoplankton blooms

Joan Llort^{1,2}, Richard Matear³, Pete Strutton^{2,4}, Andrew Bowie², Morgane Perron², Zanna Chase²

In memory of Ross Mitchell

¹Barcelona Supercomputing Centre, Climate Prediction Group - Ocean Biogeochemistry Team, Barcelona, Spain ²Institute for Marine and Antarctic Studies - University of Tasmania, Hobart, Australia ³CSIRO Oceans and Atmosphere, Hobart, Australia ⁴Australian Research Council Centre of Excellence for Climate Extremes, Hobart, Australia

@jOceanSan

Barcelona Supercomputing Center Centro Nacional de Supercomputación

INSTITUTE FOR MARINE AND ANTARCTIC STUDIES

Introduction

Aerosols can act as a source of iron in anaemic remote oceans like the Southern Ocean.

However, there is a complex chain of processes between the particle uplift in to the atmosphere, its deposition in the ocean and the potential uptake by phytoplankton

- Soil erosion
- Wind uplift
- Atmospheric chemistry

- Wet/Dry deposition
- pH
- Fe solubility and bioavailabilty

The Tasman Sea A natural lab for aerosol driven fertilisation

Strong inter-annual variability and apparent multi-annual trends

Dust, ashes and phytoplankton blooms

Dust, ashes and phytoplankton blooms

Seasonal fertilisation – virtual experiments

- 1D biogeochemical model (details <u>here</u>)
- Fertilisation experiments: Fe deposition during 1 month only

- Deposition in spring replenishes surface waters with Fe and boosts bloom
- Deposition in summer can cause isolated events of fertilisation

Seasonal fertilisation – observations

We averaged the spring-to-summer events of strong dust and BC AOD over the region.

High AOD ≠ Deposition but there is an evident relationship between averaged AOD and sChl.

Strong correlation when using **both Dust+BC**, 2008 even excluding year 2008 **Full timeseries:** 0.6 $r^2=0.74$ Chlmax Chlmax Weak (<0.5) correlation when using Dust and BC • alone (+ details here) Without 2008: 0.4 $r^2 = 0.53$ Some variability cannot be explained by AOD. • 0.3 Changes in deposition or MLD also important but not drivers. 0.2 (†) 0.02 0.03 0.04 0.01 Mean Dust+BC AOD_{550nm}

0.7

ΒY

Conclusions

- Spring to summer deposition replenishes the mixed layer with Fe and boosts bloom in a region of weak circulation but strong MLD seasonality.
- Summer responses to dust addition are weak due to Si limitation. Winter responses are absent due to low light.
- Black Carbon alone does not fertilise but it enhances dust solubility (i.e. acidity?), hence Fe uptake by phytoplankton.

Perspectives

- **Droughts, together with bushfires and changes in land-use** over the Australian continent drive Tasman Sea primary production.
- What is the impact of the unprecedented 2019-20 fire season??

Supplementary slides

Seasonal fertilisation – virtual experiments

- 1D biogeochemical model (NEMO- PISCES)
- Seasonal cycle
- Complex BGC Simplified physics
- MLD and nutrients from observations

Pre-bloom Fe inventory drives bloom

	Dust	Black Carbon	Dust + Black Carbon
r² (2003-2018)	0.48	0.31	0.74
r ² (without 2009)	0.17	0.28	0.53

