On the Multi-Technique Combination with Atmospheric Ties

Kyriakos Balidakis1, S. Glaser1, F. Zus1, T. Nilsson2, H. Schuh1,3, R. Gross4

1GFZ German Research Centre for Geosciences, Space Geodetic Techniques, Potsdam, Germany
2Lantmäteriet, Swedish Mapping, Cadastral and Land Registration Authority, Gävle, Sweden
3Technische Universität Berlin, Institute of Geodesy and Geoinformation Science, Berlin, Germany
4Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
Motivation

- Regardless of space geodetic observing system (GNSS, VLBI, SLR, and DORIS) estimates of plate tectonics, satellite orbits, Earth’s rotation, and atmospheric state should –in principle- differ only within measurement error bounds, e.g., Krügel et al. (2007), Thaller et al. (2007), Thaller (2008), Nilsson et al. (2015)

- Multi-technique combination facilitates distinction of genuine geophysical signals from technique-specific artefacts, e.g., Rothacher (2002)

- Improvements in ground co-location (more sites with more systems)

In this presentation

- Atmospheric ties from a modeller’s perspective
- Atmospheric ties from a geodesist’s perspective
Chapter 0
Ray-Tracing
How Are the Atmospheric Delays Calculated?

- In-house GFZ’s **ray-tracing software**: Direct Numerical Simulation (DNS) Tool by Zus et al., 2012; 2014

- Input:
 - Refractivity fields: **ERA5** + **IRI2016** (Bilitza, 2018) + **IGRF12** (Thébault et al., 2015)

 - pressure
 - temperature
 - specific humidity
 - geopotential
 - etc.

 - electron density

 - Earth’s magnetic field
Chapter I
Definition of Atmospheric Ties
What Are Atmospheric Ties?

- Expected differences between atmospheric parameters at co-locations obtained independently of space geodetic methods.
- Useful for intra- and inter-technique combination (e.g., Krügel et al., 2007; Thaller, 2008).
- Systematic discrepancies due to:
 - frequency difference (microwave, optical);
 - position difference (mainly height); and
 - observing system differences (technique, geometry, hardware).

- IAG JWG Tropospheric Ties (Heinkelmann et al., 2016) . . . continued for a second term by Kyriakos Balidakis & Daniela Thaller.
Chapter II
Frequency-Induced Differences
Zenith Hydrostatic Delays

- SLR@532nm 6% larger than VLBI/GNSS/DORIS
Zenith Non-Hydrostatic Delays

- SLR@532nm 66 times smaller than VLBI/GNSS/DORIS

$d_{nh}(R/L)$ [1]
Asymmetric Delays I

- Linear gradient components
 - microwave (L-Band)
 - optical (532 nm)

- Spatio-temporally noisy for microwave, smooth for optical

1mm gradient ≈ 3cm@10 degrees
Asymmetric Delays II

- 40-year average asymmetric delay amplitude
 - microwave (L-Band)
 - optical (532 nm)

\[G = \sqrt{G_{NS}^2 + G_{EW}^2} \]

- Hourly gradient estimates from ERA5 at Wettzell during CONT17

GFZ Helmholtz Centre Potsdam Technische Universität Berlin

Balidakis et al. On the Multi-Technique Combination with Atmospheric Ties
Ray-Bending due to Ionospheric Refraction

Based on ERA5, IRI2016, IGRF2014, \(\varepsilon = 3^\circ, \alpha = 0^\circ \)

\[
\int (1 + 10^{-6}N) \, ds_i - \int (1 + 10^{-6}N) \, ds_\infty
\]

\(N \): refractivity, \(ds_i \): ray-trajectory’s element, \(ds_\infty \): ray-trajectory’s element no ionosphere

Note the different colour scales!
Chapter III
Position-Induced Differences
Height-Related Differences

- 100 m height difference (Galileo)

- Zenith hydrostatic delay
 - 27 mm on average

- Zenith non-hydrostatic delay
 - 3 mm on average

- Symmetric/asymmetric delay decreases upwards

- Gradient amplitude

\[G = \sqrt{G_{NS}^2 + G_{EW}^2} \]

- 0.06 mm on average
 or -3 mm@7°
Spatial Correlation

Microwave gradients decorrelate very fast → difficult to predict

Yarragadee, Australia
Chapter IV
Observing System-Induced Differences
Ray-Bending due to Varying Orbital Altitude

Mapping factor magnitude ranking

\[m_{fL} < m_{fR}^{h,nh} < m_{fP}^{h,nh} < m_{fD}^{h,nh} \]

L: SLR, R: VLBI, P: GNSS, D: DORIS

expected \(\delta H \approx 0.2 \text{ mm} \)

expected \(\delta H \approx 2 \text{ mm} \)
Chapter V
Simulation of Space Geodetic Observations
Space Geodetic Adjustment

- Assumption: everything perfectly understood except for non-tidal station motion, atmospheric refraction, and frequency standards’ stability
- Weighted least-squares, statistical tests for outliers, loose relative constrains, absolute constrains, etc.

\[o - c = m_{fnh}d_{nh}^z + m_g[G_{NS}\cos(\alpha) + G_{EW}\sin(\alpha)] + clk + \delta \hat{x} \]

estimated parameters
\(o \): observed, \(c \): computed, \(m_{fnh} \): non-hydrostatic mapping factor, \(m_g \): gradient mapping factor, \(\epsilon \): elevation, \(\alpha \): azimuth

- NEQs for combination
Chapter VI
Multi-Technique Combination
Introducing Local + Atmospheric Ties

- Imp. for coordinates/troposphere \rightarrow offset/scatter reduction

47% and 66% reduction in zenith delay and gradient scatter resp.
... Introducing 1cm Bias in VLBI Height

- Detr. for coordinates/troposphere \rightarrow offset increase

Coordinates@VLBI

<table>
<thead>
<tr>
<th>Offset [mm]</th>
<th>R</th>
<th>E</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>single</td>
<td>6</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>LT</td>
<td>8</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>AT</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>LT+AT</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Atmosphere@VLBI

<table>
<thead>
<tr>
<th>Offset [mm]</th>
<th>d_{nh}^z</th>
<th>$10xG_{EW}$</th>
<th>$10xG_{NS}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>single</td>
<td>8</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>LT</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>AT</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>LT+AT</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Introducing 1 cm Bias in VLBI d_{nh}^z

- Detr. for coordinates/troposphere \rightarrow offset increase
Recapitulation

- Frequency: optical gradients smoother spatially and temporally than microwave
- Position: symmetric/asymmetric delays decrease with increasing altitude
- System: \(mf^L < mf^R_{h,nh} < mf^P_{h,nh} < mf^D_{h,nh} \)
- Based on simulations (PRLD combination with atmospheric and local ties):
 - ATs improve coordinate and troposphere estimation
 - ATs slightly mitigate the “damage” induced by biased LTs
 - ATs useful to detect biased LTs
Thank you!

contact
kyriakos.balidakis@gfz-potsdam.de

Acknowledgements

ECMWF for making available the ERA5 reanalysis datasets
IVS, IGS, ILRS, and IDS for the VLBI, GNSS, SLR, and DORIS data resp.
Some references

