Global analysis of the uncertainties prevailing in global-scale assessment of coastal flood damage & adaptation costs under 21st century sea-level rise

Jérémy Rohmer¹ j.rohmer@brgm.fr
With: D. Lincke², J. Hinkel², G. Le Cozannet¹, E. Lambert³
What are the most important uncertainties to be reduced in the cascade?

Adapted from Wilby & Dessai, 2010
Coastal flood damage and adaptation costs under 21st century sea-level rise

Jochen Hinkel,1, Daniel Lincke, Athanasios T. Vafeidis, Mahé Perrette, Robert James Nicholls, Richard S. J. Tol, Ben Marzeion, Xavier Fettweis, Cezar Ionescu, and Anders Levermann

Study case

The cascade of uncertainty

Future society
GHG emissions
Climate model
Regional scenario
Impact model
Local impacts

Costs

Uncertainties

5 SSP
3 RCP
Choice in GCMs (4 of CMPI5)

Subsidence (in delta regions Y/N)
Land-ice scenarios (low-med-high)

Damage function DF (2)

Database of Extremes (DINA-COAST or GTSR)
Asset-to-GDP ratio (2)

The envelope of uncertainty

2,880 combinations of scenarios!
COST: dike raising + maintenance

Using a tree-based Machine Learning approach
EAD (billion US$)

EAD: expected annual damage

Using a tree-based Machine Learning approach
Summary

- Decreasing role over time of extremes
- Increasing role of SSP and of RCP after 2030 and 2080 for the damage and adaptation costs respectively.
- This means: “mitigation of climate change helps to reduce uncertainty of adaptation costs, and being able to identify SSP reduces the uncertainty on the expected damages”.

Further work

- Update with new SLR projections (SROCC 2019)
- Integrate additional uncertainties
 - DEM (Kulp & Strauss, 2019)
 - GEV fitting (Wahl et al., 2017)