Simulating Melting of Fault Gouge at the Local Scale

Guilhem Mollon¹,², Jérôme Aubry²,
Alexandre Schubnel²

¹LaMCoS
INSA LYON
Villeurbanne, France

²Laboratoire de Géologie
ENS
Paris, France

EGU 2020 – Sharing Geoscience Online, 2020-05-05
I – Introduction

II – Simulations

III – Influence of Fault Thickness

IV – Molten Gouge

V – Influence of Melt Proportion

VI – Perspectives
Motivation of the study:
- Saw-cut triaxial experiments on Westerley granite under $\sigma_3=45\text{-}180\text{MPa}$ (Aubry 2020)
- Temperature trackers (amorphous carbon layer) showed clear evidences of flash heating

Aubry et al. (2019), GRL, 45(22)

I - Introduction
Motivation of the study:

- Saw-cut triaxial experiments on Westerley granite under $\sigma_3 = 45-180$MPa (Aubry 2020)
- Temperature trackers (amorphous carbon layer) showed clear evidences of flash heating
- SEM–TEM observation showed partial or total melting of the gouge layer

Cross section of amorphous melt layer with micro/nanometric gouge particles

Initial gouge particles
Size ~ 1µm

Completely established layer of melt
Motivation of the study:
- Saw-cut triaxial experiments on Westerley granite under $\sigma_3 = 45-180$MPa (Aubry 2020)
- Temperature trackers (amorphous carbon layer) showed clear evidences of flash heating
- SEM-TEM observation showed partial or total melting of the gouge layer

How does this layer appear, and what are its implications on friction? Can we model this?
I – Introduction

II – Simulations

III – Influence of Fault Thickness
IV – Molten Gouge
V – Influence of Melt Proportion
VI – Perspectives
Discrete Element Modelling (DEM, Newtonian dynamics) simulation protocol:

- We assume a perfectly established comminuted gouge with \(\sim 1\mu m \) angular grains.
- Sample width of 100\(\mu m \), thickness can vary.
- Normal stress \(\sigma_n = 200 \text{ Mpa} \), sliding velocity \(V = 10 \text{ m/s} \), periodic lateral boundaries.
- Code MELODY2D; plane strain; Simulated time: 20-50 \(\mu s \); time step \(\sim 1\text{ps} \).

\[\text{Mollon (2018), Comp. Part. Mech, 5}\]
Local contact conditions:

- Contour of the particles described by a piecewise linear function. Two-pass node-to-segment algorithm.
- Angular shapes and penalized frictional contact between gouge particles, $\mu=0.8$ (calibrated in Mollon et al. 2020).

Mollon et al. (2020), Granular Matter, accepted
Local contact conditions:

- Contour of the particles described by a piecewise linear function. Two-pass node-to-segment algorithm.

- Angular shapes and penalized frictional contact between gouge particles, $\mu=0.8$ (calibrated in Mollon et al. 2020).

- Any mechanical energy dissipated by intergranular friction is converted in heat and shared between the contacting grains.

- Temperature of each grain increases. No heat diffusion by contacts (yet).

Mollon et al. (2020), Granular Matter, accepted
I – Introduction
II – Simulations

III – Influence of Fault Thickness

IV – Molten Gouge
V – Influence of Melt Proportion
VI – Perspectives
We first vary the thickness of the gouge layer, from ~9µm to ~90µm.

- Shear distributed in the whole thickness for 9µm, 22µm, and 45µm, but localized for 90µm.
We first vary the thickness of the gouge layer, from ~9µm to ~90µm.

- Shear distributed in the whole thickness for 9µm, 22µm, and 45µm, but localizes for 90µm.
- Confirmed by final distribution of the Volume Fraction of the granular packing
We first vary the thickness of the gouge layer, from ~9µm to ~90µm.

- Shear-rate is thus very high for small layer thickness, but stabilizes above a thickness of 45µm
We first vary the thickness of the gouge layer, from \(\sim 9\mu m \) to \(\sim 90\mu m \).

- Shear-rate is thus very high for small layer thickness, but stabilizes above a thickness of \(45\mu m \).
- Temperature increase of the grains follows the same logic.
We first vary the thickness of the gouge layer, from ~9µm to ~90µm.

- Shear-rate is thus very high for small layer thickness, but stabilizes above a thickness of 45µm
- Temperature increase of the grains follows the same logic
- Temperature maps show a linear increase with time, with a maximum value at the center of the sheared layer
I – Introduction
II – Simulations
III – Influence of Fault Thickness

IV – Molten Gouge

V – Influence of Melt Proportion
VI – Perspectives
Statistics on the temperature increase for each grain

- We focus on the ~45µm-thick sample
- Divided in 5µm horizontal layers for sub-sampling

Temperature increase in each grain as a function of its position in the sheared layer:
Statistics on the temperature increase for each grain

- We focus on the ~45µm-thick sample.
- Divided in 5µm horizontal layers for sub-sampling.
- If temperature of each grain is normalized by the average temperature in its horizontal layer, probability distributions of grains temperature elevations collapse to a lognormal distribution.
Melt layer:

- Temperature statistics indicate that most of the melt will initially form in a ~10µm thick central layer.
- Good agreement with experimental observations (8-16µm melt layer).
Simulation of a fully molten central layer

- Proxy for the melt rheology: highly deformable, incompressible, viscoelastic grains (Mollon 2018)

- Deformability simulated by a multibody meshfree method (DEM enriched with continuum mechanics), in the code MELODY2D

Mollon (2018), Granular Matter, 20(39)
Simulation of a fully molten central layer

- Proxy for the melt rheology: highly deformable, incompressible, viscoelastic grains (Mollon 2018)

- Deformability simulated by a multibody meshfree method (DEM enriched with continuum mechanics), in the code MELODY2D

- No friction and no cohesion at contacts, but energy dissipation by internal viscosity and subsequent heat creation.

- Still no heat diffusion through contacts

- Equivalent viscosity: ~12.1 Pa.s (in the low range for molten silicates, Wallace et al. 2019)

Mollon (2018), Granular Matter, 20(39); Wallace et al. (2019), Geoc. and Cosmo. Acta 255

IV – Molten Gouge
Simulations Results

<table>
<thead>
<tr>
<th>X-displacement (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>200</td>
</tr>
</tbody>
</table>

- **Only solid grains:** $\mu = 0.48$
- **Fully molten central layer:** $\mu = 0.08$

- Distributed shear in the whole granular layer
- Localized accommodation in the central melt layer, solid grains unaffected
Simulations Results

Only solid grains: $\mu=0.48$

Distributed shear in the whole granular layer

Localized accommodation in the central melt layer, solid grains unaffected

Low and heterogeneous connectivity

Large and homogeneous connectivity, especially in the melt layer

Fully molten central layer: $\mu=0.08$
Simulations Results

Only solid grains: $\mu = 0.48$

- Distributed shear in the whole granular layer
- Localized accommodation in the central melt layer, solid grains unaffected

Fully molten central layer: $\mu = 0.08$

- Low and heterogeneous connectivity
- Large and homogeneous connectivity, especially in the melt layer
- Important dilatancy
- No volume change in solid grains, Volume Fraction close to 1 in the melt layer
IV – Molten Gouge

Simulations Results

<table>
<thead>
<tr>
<th>Only solid grains: $\mu=0.48$</th>
<th>Fully molten central layer: $\mu=0.08$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribute shear in the whole granular layer</td>
<td></td>
</tr>
<tr>
<td>Localize accommodation in the central melt layer, solid grains unaffected</td>
<td></td>
</tr>
<tr>
<td>Low and heterogeneous connectivity</td>
<td></td>
</tr>
<tr>
<td>Large and homogeneous connectivity, especially in the melt layer</td>
<td></td>
</tr>
<tr>
<td>Important dilatancy</td>
<td></td>
</tr>
<tr>
<td>No volume change in solid grains, Volume Fraction close to 1 in the melt layer</td>
<td></td>
</tr>
<tr>
<td>Distributed and important temperature elevation</td>
<td></td>
</tr>
<tr>
<td>Only moderate temperature elevation in the melt layer</td>
<td></td>
</tr>
</tbody>
</table>
I – Introduction

II – Simulations

III – Influence of Fault Thickness

IV – Molten Gouge

V – Influence of Melt Proportion

VI – Perspectives
Investigation of the progressive creation of the melt layer:

9 simulations with increasing proportions of melt Φ_M in the central layer (5% to 100%, partial views)
Large influence of Φ_M on the flow regime:

-A larger proportion of melt in the central layer promotes localization and increases local shear rate.

-With increasing Φ_M, temperature elevation first increases in the central layer (due to localization) and then decreases (fluidization of the central layer).

Graphs

- **Progressive localization**
 - $\Phi_M = 0\text{-}40\%$: Increase of temperature elevation.
 - $\Phi_M > 50\%$: Decrease of temperature elevation.
Large influence of Φ_M on the flow regime:

- A larger Φ_M also increases the connectivity of the grains, especially in the central layer.
- It also increases the density of the granular packing, especially in the central layer.
Friction and energetic budget

- Friction coefficient of the interface decreases non-linearly with Φ_M
- Based on the type of energy dissipation (solid or deformable grains), friction is decomposed into two contributions: a Coulomb term and a viscous term.
Friction and energetic budget

- Friction coefficient of the interface decreases non-linearly with Φ_M
- Based on the type of energy dissipation (solid or deformable grains), friction is decomposed into two contributions: a Coulomb term and a viscous term.
- These contributions do not evolve linearly with Φ_M
I – Introduction
II – Simulations
III – Influence of Fault Thickness
IV – Molten Gouge
V – Influence of Melt Proportion

VI – Perspectives
Future work will consist in writing a friction law for melting-related dynamic weakening:

- Adding the contributions of:
 - a Coulomb term (related to normal stress and granular properties of the gouge)...
 - a Viscous term (related to sliding velocity, layer thickness and melt viscosity)....
Future work will consist in writing a friction law for melting-related dynamic weakening:

- Adding the contributions of:
 - a Coulomb term (related to normal stress and granular properties of the gouge)...
 - a Viscous term (related to sliding velocity, layer thickness and melt viscosity)...

... both of them being functions of the melt proportion...
... which is a function of temperature elevation and shear localization!
Future work will consist in writing a friction law for melting-related dynamic weakening:

- Adding the contributions of:
 - a Coulomb term (related to normal stress and granular properties of the gouge)...
 - a Viscous term (related to sliding velocity, layer thickness and melt viscosity)...

 ... both of them being functions of the melt proportion...

 ... which is a function of temperature elevation and shear localization!

- Formulation of the weakening law in terms of sliding distance.
- Dialog and comparison with existing models, e.g. flash weakening.
- Introduction of heat diffusion in the surrounding medium.
Thank you

Guilhem Mollon1,2, Jérôme Aubry2, Alexandre Schubnel2

1LaMCoS
INSA LYON
Villeurbanne, France

2Laboratoire de Géologie
ENS
Paris, France

EGU 2020 – Sharing Geoscience Online, 2020-05-05

Simulating Melting of Fault Gouge at the Local Scale