Modeling Catchment Scale Nitrate Export using the StorAge Selection Functions

Van Tam Nguyen¹, Rohini Kumar², Stefanie R. Lutz¹, Andreas Musolff¹, Jan H. Fleckenstein¹

¹Department of Hydrogeology, Helmholtz-Zentrum für Umweltforschung - UFZ, Leipzig
²Department Computational Hydrosystems, Helmholtz-Zentrum für Umweltforschung - UFZ, Leipzig

EGU2020, 6th May 2020
Water age & solute dynamics at the catchment scale

• Catchments store and release water of different ages.

• The age of a water parcel has big implications for understanding flow and transport mechanisms (Botter et al., 2011; Sprenger et al., 2019).

• The water-age based concept, the formulation of transport by transit time distributions (TTDs), has been emerging as a useful tool for understanding catchment-scale solute export (Sprenger et al., 2019).
Formulation of transport by transit time distributions

• TTD-based models have been used to explore solute export at the catchment scale, including nitrogen legacy (Ilampooranan et al., 2019; van Meter et al., 2018; 2017).

• These models assume that TTDs are time-invariant.

• Experimental data and numerical studies have indicated that TTDs (e.g., for discharge) are time-variant for many hydrological systems (Yang et al., 2018a; Kaandorp et al., 2018; Rodriguez et al., 2018; Kim et al., 2016; van der Velde et al., 2012).
Formulation of transport with SAS-based approach

A - Uniform

B - Dirac delta

C - Gamma

Concept of the SAS-based approach (Harman et al., 2015)
Formulation of transport with SAS-based approach

• StorAge Selection (SAS) function is a transformed TTD function.

• SAS functions have a clearer physical meaning and are more stable in time, easier for parameterization than TTDs (van der Velde et al., 2012)

• SAS functions could be combined with storage-discharge functions to provide a coherent framework for describing both velocity and celerity transport mechanisms (Harman et al., 2019; Hrachowitz et al., 2016)

Spatial heterogeneity of catchment characteristics and large scale testing have not been addressed with the SAS-based model.
Research objectives

• Introducing a new model, allowing a distributed representation of soil nitrogen dynamics and a spatially implicit representation of subsurface transport pathways based on the SAS-based approach.

• Validating the proposed model at a mesoscale catchment with heterogeneous characteristics.
mHM-Nitrate model

- a grid-based water quality (nitrate) model (Samaniego et al., 2010; Kumar et al., 2013; Lindström et al., 2010; Yang et al., 2018b).

- accounts for spatial heterogeneity in land use management practices (fertilizer/manure application, crop rotation).

- has a simple subsurface nitrate transport module (no denitrification below the root zone, inadequate representation of celerity-driven transport).

→ Replace the subsurface transport module with the SAS-based concept
mHM-Nitrate model vs. proposed mHM-SAS model

Conceptual model of (a) the mHM-Nitrate model and (b) the proposed mHM-SAS model at a grid cell level.
mHM-SAS model

Master equation for the SAS compartment

\[
\frac{\partial S_T(T, t)}{\partial t} = J(t) - Q(t) \cdot P_Q(T, t) - \frac{\partial S_T(T, t)}{\partial T}
\]

Changes of the water volume in storage with age \(\leq T \)

Solute (nitrate) concentration at the outlet

\[
C_Q(t) = \int_0^\infty C_J(T, t) \cdot p_Q(T, t) \cdot \exp\left(-\frac{T}{t_{12}}\right) \cdot dT
\]

TTD of discharge

Half life of nitrate

\[
P_Q(T, t) = \Omega_Q(P_S(T, t), t)
\]

Normalized age-ranked storage

SAS compartment: unsaturated and saturate zone below the root zone over the whole catchment
Location of the upper Selke with (a) the digital elevation model (DEM), (b) land use/land cover map, and (c) soil map. The catchment outlet is indicated by a black dot.
Study area

- Catchment area: 100 km² (61% forest, 36% agricultural)
- Main crops: winter wheat, triticale, winter barley, rye, rapeseed, corn.
- Fertilizer/manure application rate: 130 – 190 kg N/ha/yr
- Strong seasonality in runoff regime
- Chemodynamic C(nitrate)-Q relationship
Representation of the time-variant SAS functions

- Two-parameter beta function \(\text{beta}(P_s, a, b)\)

- Two beta functions are used to characteristics of the time-variant SAS functions: \(\text{beta}_{\text{wet}}(P_s, a_{\text{wet}}, b_{\text{wet}})\), and \(\text{beta}_{\text{dry}}(P_s, a_{\text{dry}}, b_{\text{dry}})\)

- The wet and dry periods are defined based on the following factor:

\[
r_t = \frac{\sum_{i=t-n}^{t} J_i}{\sum_{i=t-n}^{t} Q_i}
\]

- Inflow to the SAS compartment
- Outflow
- \(n\): number of time steps

\(r_t \geq 1 \rightarrow \text{wet} \rightarrow \text{beta}_{\text{wet}}: \text{Young water selection preference}\)

\(r_t < 1 \rightarrow \text{dry} \rightarrow \text{beta}_{\text{dry}}: \text{Old (and young) water selection preference}\)
Simulated discharge and in-stream nitrate ($N - NO_3$) concentration at Silberhütter

half life of nitrate = 134 days
Simulated spatial nitrogen dynamics within the root zone

(a) Input

\(\mu = 41.1 \)

\(\sigma = 31.4 \)

(b) Mineralization

\(\mu = 17.1 \)

\(\sigma = 16.4 \)

(c) Wet atmospheric deposition

\(\mu = 10.5 \)

\(\sigma = 0.8 \)

(d) Plant uptake

\(\mu = 38.8 \)

\(\sigma = 28.5 \)

(e) Denitrification

\(\mu = 20.5 \)

\(\sigma = 13.5 \)

(f) Leaching

\(\mu = 7.7 \)

\(\sigma = 7.2 \)

0 5 15 60 120

\(kg \cdot N \cdot ha^{-1} \cdot yr^{-1} \)
SAS functions – subsurface storage – nitrate concentration – median TTD of discharge

(a) SAS functions for the wet and dry periods

\[\text{beta} (0.44, 5.0) \quad \text{beta} (0.1, 0.2) \]

Normalized age-ranked storage \(P_s \) [-]

(b) Relationship between the SAS function and subsurface storage

(c) Relationship between the SAS function and concentration in the outflow

(d) Relationship between the SAS function and the median TTD

EGU2020, 6th May 2020
• Denitrification below the root zone should be accounted for.
• Discharge and in-stream nitrate concentration dynamics at the catchment outlet could be well represented by the proposed model.
• The mHM-SAS model could provide explicit spatial information about soil nitrogen.
• The mHM-SAS model can represent the relation between the SAS function, storage, and median TTD of discharge in a qualitative and reasonable manner.
Outlook

- Quantitative verification of the simulated travel time and spatial nitrogen dynamic within the root zone
- Testing of the model for catchments with nitrogen legacy (velocity-driven transport)
REFERENCES

Thank you for your attention 😊

Questions and Suggestions are welcome