Nutrient constraints on the Amazon carbon sink: from field measurements to model projections

Katrin Fleischer¹, Beto Quesada², David Lapola³, Lucia Fuchslueger⁴, Laynara Lugli², Tatiana Reichert¹, Anja Rammig¹

1 Technical University of Munich, TUM School of Life Sciences Weihenstephan, Freising, Germany
2 National Institute for Amazonian Research, Manaus, Brazil
3 CEPAGRI, University of Campinas, Brazil
4 Centre for Microbiology and Environmental Systems Science, University of Vienna, Austria
The Amazon rainforest provides numerous, globally significant ecosystem services; its contribution to carbon storage in its biomass and continuous sequestration from the atmosphere, is only one of them.

One key question is: How much carbon is the Amazon rainforest storing and sequestering from the atmosphere? And how will this change in response to future climate and elevated atmospheric CO$_2$?

Will the Amazon rainforest continue to sequester carbon from the atmosphere?
The Amazon carbon sink: plot measurements

- **Biomass accumulates carbon worldwide** but decreasing sink strength in the tropics 1990s to 2000s\(^1\) – Are we witnessing increasing limitations (e.g. nutrients, water, light) to the CO\(_2\) fertilization effect?

- **Amazon C sink in strongest decline, continued throughout 2010s and predicted to reach zero by 2030** – But net C sink reductions are mainly due to increases in turnover/mortality, not lowering off productivity.\(^2\)

\(^1\)Pan et al. 2011 Science; \(^2\)Brienen et al. Nature; Hubau et al. 2020 Nature
The Amazon carbon sink: CO₂ experiments

- Free Air CO₂ enrichment (FACE) experiments can assess CO₂ effect at ecosystem scale – Young and temperate forests are sequestering C in response to eCO₂, but experiments from mature forests show no sign of increased carbon storage so far.¹

- No FACE experiment has ever been conducted in mature and highly diverse tropical rainforests – preventing us from reliably foreseeing the eCO₂ effect from a large contributor to the land C sink²*

*Alternating hypothesis: CO₂ treatment (as grey bar) induces higher biomass C accumulation (blue) or accelerates initial growth but does not lead to higher biomass accumulation (red) in young forests (a) and in mature forests (b)
The Amazon carbon sink: CO$_2$ experiments

- Extrapolation in space and time of existing CO$_2$ experiments indicates largest (but moderate) biomass C sink in the tropics1 – but tropical estimate also associated to the greatest uncertainty since experimental evidence is scarce.

- The actual future Amazon carbon sink induced by eCO$_2$ may be overestimated with such extrapolations – Upscaling to the Amazon assumes that responses and feedbacks observed in other FACE experiments are representative for mature and highly diverse forests in the Amazon.

1Terrer et al. Nature Climate Change 2019
Vegetation models project that CO₂ fertilization of plant growth will continue to induce terrestrial C sink – the CMIP5 Earth System Model ensemble predicted a 63% increase in global NPP over the 21st century¹, however this is mainly based on C-only simulations.

CO₂ fertilization effect may by impeded by lack of rock-derived nutrients (e.g. phosphorus) in the tropics – while vegetation models progressively include the P cycle, our lack of understanding has prevented them from being consistently considered in ESM simulations.

¹Kolby Smith et al. Nature Geoscience 2016
The Amazon carbon sink: Vegetation models

• **The status**: Field measurements indicate a declining biomass carbon sink strength, C-only model simulations predict a continuing CO$_2$-induced carbon sink, and experimental evidence (albeit from non-representative systems) points to a moderate sink in the Amazon.

• **The question remains**: Will the Amazon rainforest sequester more carbon in its biomass when exposed to elevated CO$_2$ in the future?

• We performed a model-ensemble (14 vegetation models) to simulate the planned AmazonFACE experiment and derive model-based hypotheses for the experiment (6 models considered P control on productivity, growth and nutrient dynamics)
The Amazon carbon sink: Vegetation models

• Models considering CNP feedbacks projected a lower CO2-induced biomass C sink than models considering C-only or CN interactions¹

• Low soil P availability in the Central Amazon reduces the carbon sink strength, however the response varied across CNP models, inducing 0 - 2 kg C m⁻² after 15 years of eCO₂

• What caused these differences among the CNP models?

¹Fleischer et al. Nature Geoscience 2019
The Amazon carbon sink: vegetation models II

- CNP models represented varying degrees of flexibility in alleviating soil P shortages under eCO₂

- Stoichiometric flexibility and greater carbon allocation to wood aided in increasing P use efficiency (PUE) in some models

- Plant acquisition of less-available P forms was upregulated in some models (e.g. phosphatase-based biochemical mineralization or desorption)

¹Fleischer et al. Nature Geoscience 2019
The Amazon carbon sink: hypotheses

H1. **Low soil P availability will strongly constrain future plant biomass growth response to eCO$_2$** either by downregulating photosynthesis or limiting plant growth directly, or a combination thereof.

H2. Despite the limited soil P supply, **plasticity in vegetation stoichiometry and allocation patterns will allow for some biomass growth** under eCO$_2$.

→ Question whether phenological plasticity alone can result in improved PUE or whether a community shift to better adapted species may improve PUE?

H3. **Plants will increase investments in P acquisition** to increase P supply and allow biomass growth under eCO$_2$ either via greater P interception through fine root production or via greater P liberation from P desorption or biochemical mineralization of P.

→ Question whether these is further room for upregulation of P acquisition mechanisms, on these millennia old ecosystems?
The Amazon carbon sink: further considerations

- The model ensemble encapsulates a range of plausible hypotheses and represents a potential range of biomass C responses to eCO\textsubscript{2} under low soil P availability in the Central Amazon.

- Community response to eCO\textsubscript{2} will depend on species-specific responses in this highly diverse ecosystem1, some species may, other may not further respond to eCO\textsubscript{2}.

- Interactions of eCO\textsubscript{2}-nutrient feedbacks with climatic conditions, drought, and atmospheric moisture circulation need further consideration.

1Turner et al. Nature 2018
The Amazon carbon sink: what we need next

- Research on plant phosphorus acquisition in the Amazon is urgently needed to estimate coverage and governing processes, C costs, etc.¹ – see also Reichert et al. in this session

- Phosphorus controls ecosystem functioning, not necessary limits, but controls functioning in terms of carbon storage and cycling² – models that neglect C-P feedbacks likely overestimate C sink strength (and underestimate adverse climate impacts)

- Exact constrains of soil P availability on the future C sink remain uncertain, also due to varying edaphic, climatic and biogeographical conditions in the Amazon basin³

The Amazon carbon sink: the diverse basin

- The model ensemble of the AmazonFACE project simulated vegetation on impoverished weathered old soils, which are representative of ~32% of Amazon forest (Ferralsol)\(^1\)

- The control of P on forest functioning, and thus its response to environmental change, is expected to vary along the soil fertility gradient in the Amazon\(^2\)

\(^{1}\)Quesada et al. Biogeosciences 2011; \(^{2}\)Quesada & Lloyd, 2016
The Amazon carbon sink: the next step

- Conduct AmazonFACE... see: https://amazonface.inpa.gov.br/

- Conduct **basin-wide model simulations with CNP models** that adequately capture C-P feedbacks, the control of the soil fertility gradient on carbon cycling, and climate interactions

- **Assess simulated resilience of the intact Amazon forest to climate change** and carbon sequestration potential for various scenarios of future atmospheric CO$_2$ and climate conditions
References

