Slates: a potential rock type to extract
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underground?

J. Herrmannt?, E. Rybacki!, W. Wang?, H. Milsch!, B. Wagner2 and B. Leiss?

1 GFZ German Research Centre for Geosciences
2 Geoscience Centre of the Georg-August-University of Goéttingen

ASEDIMENTS & METAVG
AN A
Co ™~

DEMOSITE DEMOSITE
RHENISH GOTTINGEN HAVELANGE
MASSIF
HARZ

S
Quartzite N

-Variscan Extensional Tectonics

FOREST CORNUBIAN
CARNMENELLIS
GRANITE THOLILE

DEMOSITE DEMOSITE
SOULTZ- REDRUTH
SOUS-FORETS

Granite

" i Investigation
Investigation i Onsite tests methods
targets Outcrop & samples 5 Lab work
Borehole & cores 3 H “Experiments (on samples)
Reservoir model B { o Modelling & Simulation

Surface infrastructure T . stimulation

GFZ |
This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 792037

P HELMHOLTZ




Content

e Sample material
9 Experimental Setup

Content HWWEET

PoTsDam HELMHOLTZ




Motivation

Typically, granitic rocks are considered to act as host rocks for
Enhanced Geothermal Systems (EGS) as they are believed to
contain a sufficient amount of fractures with an aperture large
enough to guarantee an economical production of geothermal
energy from the subsurface. Alternatively, metamorphic rocks
such as slates/ shales are believed to represent geological
environments used for a reasonable heat extraction. Within the
framework of the European initiative ‘"MEET*’, we are investigating
the influence of p., T, ¢ and surface roughness on the permeability

of fractures present in unconventional Variscan reservoir rocks

(slates) . pc = confining pressure, T = temperature, ¢ = differential stress acting perpendicular to fracture surface

*Multidisciplinary and multi-context demonstration of EGS exploration and Exploitation Techniques and potentials
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Sample Material

Composition

Herrmann et al., in prep. : Alum shale (DK)

Posidonia shale (GER)

4 Upper Bowland shale (Preese Hall well, UK)
0 <> Upper Bowland shale (outcrop, UK)
100 | & Upper Bowland shale (Marl Hill Moor well, UK)
% Lower Bowland shale (Preese Hall well, UK)
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Ap = Apatite, Phy = Phyllosilicate, Qtz = Quartz,
Py = Pyrite, Cal = Calcite
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Core material of Wissenbach shale; ‘Hahnenklee' well (z ® 1150m)

Clays+Mica=50wt%, Carbonates=25wt%, Quartz+Feldspar=25wt% (a+b)

Pronounced elastic and only minor plastic deformation at 50 MPa

confining pressure, p., 100° C temperature, T, and an axial strain

rate of é=5x10"%s! (c)

Mechanical properties (triaxial compressive strength,oqcs , static

Young's modulus, E) in line with other European shales (d)
Depending on bedding orientation, tensile strength (from Brazilian

Disk testing) ranges from o, =

7.9 to 26.7 MPa (e)
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Experimental Setup
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Shale assembly and fracture roughness
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Initial fracture roughness, Sy = 0.02 mm

Initial fracture roughness

$,=0.02mm

d=50mm

Sample-setup consists of two cylindrical specimens, each: diameter, d = 50mm and

thickness, t = 10 mm

(a+b)]| Prepared perpendicular to bedding orientation
. Radial fluid flow (H,O) realized through ‘upstream' and ‘downstream® boreholes
. Differential pressure along fracture, Ap,, measured at two separate boreholes
(c) - For comparison, all fractures were prepared with an average initial surface
roughness of S; = 0.02mm
. Experimental duration for each experiment: t = 1 -2 weeks
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Results

Influence of confining pressure
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. With increasing p., permeability within the fracture, k, is decreasing and approaching a

minimum value potentially induced by a change from fluid flow due to an increased fracture

surface asperity area
. - also apparent by comparing initial and final fracture surface roughness after the experiment,

which reveals a reduced amount of surface asperities (irreversible inelastic deformation)
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Results

Influence of differential stress
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. Influence of ¢ on k similar to the effect of p. on k (decreasing k with increasing o); also with
respect to fracture surface asperities

. Recorded unloading curve yields hardly a recovery of k if compared to the initial value at ¢ = 0
MPa, which proofs our assumption of an irreversible, inelastic deformation of the surface

asperities within the fracture
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Results

Influence of temperature
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. After a rapid drop with increasing temperature from T = 20 °C to T = 40 °C, k remains almost
constant
. In general, higher fracture permeability than those of samples measured at increasing p. and ¢
. - potentially associated with abundant fracture surface asperities of the specimen after the
experiment
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Results

Combined influence of p,, T and o
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Results

Influence of proppant agents
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. Propping the fracture with a multilayer of Quartz grains yields a tremendously less influence of

p. on k, if compared to samples containing only self-propped fractures
. Additionally, the amount of inelastic, irreversible deformation seems to be little as changes of k

values prior to and after loading are relatively small
. The usage of proppant agents to maintain conductive pathways within slate reservoirs may only

be considered at confining pressures larger than p. = 20 MPa
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Conclusions

Permeability, k, of fractures decreases with increasing confining pressure and axial differential

stress approaching a constant k - value

« After an immediate drop at T = 40°C temperature, fracture permeability remains nearly constant
up to 100°C

« Evolution of fracture permeability correlates with evolving fracture surface roughness suggesting
a change in the fluid flow patterns within the fracture (irreversible deformation of the fracture

surface)

« The influence of p.,, T and ¢ on fracture permeability reduction is relatively low, suggesting that

slates may be considered as potential EGS host rocks

- especially if one assumes the usage of proppant which tremendously reduces the influence of

mechanical loading on the fracture permeability
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Outlook

+ Investigate in detail the influence of proppant

() embedment on the long-term fracture
permeability; Proppants

» may embed in relatively weak, clay-rich

reservoir rocks, such as the Posidonia (POS)

shale - leading to a reduced fracture
permeability due to fracture closure

» Or crush in relatively strong, quartz-rich
host rocks, e.g., Bowland (shale) > yielding

a lowered fracture permeability as a result

of sealed fractures due to fines production

and migration

« Additionally, fracture surface roughness and shear strain may have a severe effect on the fracture
permeability and therefore will be investigated by setting up, perform and evaluate according flow

experiments
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