Slates: a potential rock type to extract geothermal energy from the underground?

J. Herrmann¹, E. Rybacki¹, W. Wang¹, H. Milsch¹, B. Wagner² and B. Leiss²

¹ GFZ German Research Centre for Geosciences ² Geoscience Centre of the Georg-August-University of Göttingen

Motivation

Typically, granitic rocks are considered to act as host rocks for Enhanced Geothermal Systems (EGS) as they are believed to contain a sufficient amount of fractures with an aperture large enough to guarantee an economical production of geothermal energy from the subsurface. Alternatively, metamorphic rocks such as slates/ shales are believed to represent geological environments used for a reasonable heat extraction. Within the framework of the European initiative 'MEET*', we are investigating the influence of p_c , T, σ and surface roughness on the permeability of fractures present in unconventional Variscan reservoir rocks (slates). p_c = confining pressure, T = temperature, σ = differential stress acting perpendicular to fracture surface

*Multidisciplinary and multi-context demonstration of EGS exploration and Exploitation Techniques and potentials

Sample Material

Composition

Ap = Apatite, Phy = Phyllosilicate, Qtz = Quartz, Py = Pyrite, Cal = Calcite

Mechanical properties

- Core material of Wissenbach shale; 'Hahnenklee' well ($z \approx 1150$ m)
- Clays+Mica≈50wt%, Carbonates≈25wt%, Quartz+Feldspar≈25wt% (a+b)
- Pronounced elastic and only minor plastic deformation at 50 MPa confining pressure, p_c , 100° C temperature, T, and an axial strain rate of $\dot{\varepsilon}$ =5x10⁻⁴s⁻¹ (c)
- Mechanical properties (triaxial compressive strength, σ_{TCS} , static Young's modulus, E) in line with other European shales (d)
- Depending on bedding orientation, tensile strength (from Brazilian Disk testing) ranges from $\sigma_t = 7.9$ to 26.7 MPa (e)

Sample Material

Experimental Setup

Shale assembly and fracture roughness

- Sample-setup consists of two cylindrical specimens, each: diameter, d = 50mm and thickness, t = 10 mm
- (a+b) Prepared perpendicular to bedding orientation
 - Radial fluid flow (H₂O) realized through 'upstream' and 'downstream' boreholes
 - Differential pressure along fracture, Δp_p , measured at two separate boreholes
 - (c) For comparison, all fractures were prepared with an average initial surface roughness of $S_q \approx 0.02mm$

Experimental Setup

• Experimental duration for each experiment: t = 1 -2 weeks

Influence of confining pressure

- With increasing p_c, permeability within the fracture, k, is decreasing and approaching a minimum value potentially induced by a change from fluid flow due to an increased fracture surface asperity area
- → also apparent by comparing initial and final fracture surface roughness after the experiment, which reveals a reduced amount of surface asperities (irreversible inelastic deformation)

Influence of differential stress

- Influence of σ on k similar to the effect of p_c on k (decreasing k with increasing σ); also with respect to fracture surface asperities
- Recorded unloading curve yields hardly a recovery of k if compared to the initial value at $\sigma = 0$ MPa, which proofs our assumption of an irreversible, inelastic deformation of the surface asperities within the fracture

Influence of temperature

- After a rapid drop with increasing temperature from T = 20 °C to T = 40 °C, k remains almost constant
- In general, higher fracture permeability than those of samples measured at increasing p_c and σ
- \rightarrow potentially associated with abundant fracture surface asperities of the specimen after the experiment

Combined influence of p_{c} , T and σ

- k ↓ for p_c and $\sigma \uparrow$, due to irreversible deformation of fracture surface asperities (I+II)
- Even after unloading, k still decreases with increasing p_c (III)
- increasing σ at elevated p_c continues to yield decreasing k values (IV)
 - Even after a pronounced deformation history (I IV), k decreases with increasing T (from T = 24 °C to T = 90 °C), suggesting the presence of fracture sealing processes at elevated temperatures

Influence of proppant agents

- Propping the fracture with a multilayer of Quartz grains yields a tremendously less influence of p_c on k, if compared to samples containing only self-propped fractures
- Additionally, the amount of inelastic, irreversible deformation seems to be little as changes of k values prior to and after loading are relatively small
- The usage of proppant agents to maintain conductive pathways within slate reservoirs may only be considered at confining pressures larger than $p_c \approx 20$ MPa

Conclusions

- Permeability, k, of fractures decreases with increasing confining pressure and axial differential stress approaching a constant k value
- After an immediate drop at T \approx 40°C temperature, fracture permeability remains nearly constant up to 100°C
- Evolution of fracture permeability correlates with evolving fracture surface roughness suggesting a change in the fluid flow patterns within the fracture (irreversible deformation of the fracture surface)
- The influence of p_c , T and σ on fracture permeability reduction is relatively low, suggesting that slates may be considered as potential EGS host rocks
- → especially if one assumes the usage of proppant which tremendously reduces the influence of mechanical loading on the fracture permeability

Outlook

- Investigate in detail the influence of proppant embedment on the long-term fracture permeability; Proppants
 - ➤ may embed in relatively weak, clay-rich reservoir rocks, such as the Posidonia (POS) shale → leading to a reduced fracture permeability due to fracture closure
 - ➢ Or crush in relatively strong, quartz-rich host rocks, e.g., Bowland (shale) → yielding a lowered fracture permeability as a result of sealed fractures due to fines production and migration
- Additionally, fracture surface roughness and shear strain may have a severe effect on the fracture permeability and therefore will be investigated by setting up, perform and evaluate according flow experiments

