Contemporary Challenges for Shoreline Change Analysis

SUSAN M BROOKS¹, J.A. POLLARD², TOM SPENCER²

Department of Geography, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK.
s.brooks@bbk.ac.uk

Cambridge Coastal Research Unit, Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK.
Figure 1: Study site location on the North Norfolk coast, UK. A) General setting within the UK, B) landuse settings along the barrier coast of North Norfolk and C) detail of the Scolt Head Island field site locations of cross-shore profiles from the UK Environment Agency database. Note: cross shore profile used in this study identified by red line and detailed area of analysis shown by red bounded box.
Cross-shore profile

Coastal topographic (RTK) survey

LiDAR point cloud or DEM product

Historic Map

Contemporary aerial photo

Overlay through time

Generate .las file

Apply filter

Generate Raster DEM

LiDAR-derived datum–based shoreline (MHWS)

Dataset

Procedure

Output

Context

Extract Mean High Water Ordinary Tides (proxy)

Extract vegetation line (proxy)

Alongshore 2D shoreline change

Positive and negative diffusivity: putative sediment cells

Centennial-scale long term shoreline change

Identify shoreline stasis and dynamism

2D vertical and horizontal shoreline change

Storm process drivers

Decadal-scale shoreline change in response to storm events

Error quantified

Validate DEM

DEM of Difference (DOD)

2D positional and 3D volumetric shoreline change

Annual-scale shoreline morphodynamics:
- response to extreme events
- Coastal barrier resilience through sediment delivery to the nearshore

Wave and water level data

Figure 2: Workflow diagram for datasets, procedures, outputs and context
Figure 3: North Norfolk Coast in 1885 (1 :10 560) and 2010 (aerial photo) showing centennial-scale change and identifying areas of positive and negative sediment diffusivity along the coast.
The photo above shows an extensive washover and the cross-shore profile location on the higher dunes behind. The barrier has lost elevation (3 m) and retreated (13 m) inland. Each storm can be matched to the forcing conditions from the Blakeney Overfalls Wave Rider (figure 1) for wave height and direction.


Cross-shore profiles courtesy of the UK Environment Agency.
A stretched raster from -4.7 m (height loss - dark) to 2.3 m (height gain – light) to 2.3 m (height gain – light).

Figure 5: Use of LiDAR for shoreline change analysis allows datum based shorelines to build upon proxy based information. Here, airborne LiDAR point clouds from 28th January 2013 (A) and 28th February 2014 (B) were processed to develop a 1 m resolution DEM and a DEM of Difference (DOD) (C) was derived for an area depicted by the bounding box in figure 1c.

Clearly seen are the locations of barrier erosion (retreat) where elevations have fallen by up to 4.7 m, and erosion around the western end of the barrier. However, elevation gains are evident at the western end as it continues to expand, the intertidal bars on the beach are developing and areas around the washover and laterals have also gained in elevation.
Figure 6: LiDAR product accuracy as verified by RTK ground survey for points along the shoreline of the area shown in figure 5. (A) Ground surface elevations from RTK surveys and LiDAR for the western end of the barrier at Scolt Head Island (28th January 2013 LiDAR elevations are plotted against EA cross-shore surveys on 8th March 2013 (blue); 28th February 2014 LiDAR elevations are plotted against EA cross-shore surveys on 3rd March 2014 (red) and ground survey on 31st January 2014 (green) for the eroded edge of the shoreline barrier. The 1:1 line is shown in black. In all cases r² > 0.98. (B) Frequency distribution plot of mean error calculated in 6A.
Conclusions

- Proxy-based and datum-based shorelines are used to develop a picture of shoreline change at centennial, decadal, annual and event scales.
- Methodological developments include working with historic maps, aerial photos, ground-based survey and LiDAR to assess magnitude and location of shoreline change.
- Linked process drivers are contained in wave and water level data sets.
- LiDAR products are 1 m pixel resolution and give accuracy to within ±10 cm, which for shoreline change of 13 m is within 0.7%.
- Higher frequency satellite imagery is available from mid-1980s but at pixel resolutions of 30 m – currently too coarse to provide accurate proxy-based shoreline information and unable to provide datum-based shoreline information.
- Combination of maps, aerial photos, cross-shore profiles and ground RTK surveys as well as LiDAR is suitable for providing regional to local scale analysis of contemporary and historic shoreline change at a range of scales.
Further Information:
