

Environmental impact assessment of a Pb, Zn smelter using soil, slag and tree ring elemental and isotopic geochemistry in Kabwe, Zambia

Rafael Baieta¹, Martin Mihaljevic¹, Vojtech Ettler¹, Ales Vanek²

¹Charles University, **santosbaietar@natur.cuni.cz** ²Czech University of Life Sciences Prague

Kabwe Zambia

P1: soil profile

P2: soil profile + tree

P3: soil profile + tree

P4: soil profile

Soils

- Highest (mg kg⁻¹): 600 Cu, **14000 Zn**, **16000 Pb**;
- Remote sites (mg kg⁻¹): 30 Cu, 350 Zn, 100 Pb;

Soils

- Highest (mg kg⁻¹): 600 Cu, **14000 Zn, 16000 Pb**;
- Remote sites (mg kg⁻¹): 30 Cu, 350 Zn, 100 Pb;

- Slag signature is similar to topsoils and local galenas;
- The mining/smelting activities are the sources of contamination.

- Highest (mg kg⁻¹): 10 Cu, 29 Zn, 6 Pb;
- More Pb in the remote site, Why?;
- Due to small size (<1 μg) of airborne particles?

- Highest (mg kg⁻¹): 10 Cu, 29 Zn, 6 Pb;
- More Pb in the remote site, Why?;
- Due to small size (<1 μg) of airborne particles?

Sequential extraction

- Mobile Pb is found in the reducible fraction;
- That Pb is not from anthropogenic origin.

Step 2 – reducible (Fe-Mn oxyhydroxides), 0.5 mol l⁻¹ NH₂OH.HC₁ at pH 1.5;

Step 4 – residual, total digestion (targeting metals bound to silicates).

Step 3 – oxidizable (organic matter and sulphides), H₂O₂ (85 °C) then 1 mol I⁻¹ CH₃COONH₄.

Tree rings

- Peaks in δ^{13} C correspond to peaks in major cations and metals.
- Increase in smelter SO_2 and NO_x allowing for higher mobilization?

Production records

Combining it all

CC BY

Conclusions

- The topsoils in Kabwe are highly contaminated. Lead values are also high in local pine trees;
- Pb isotopes show that the contamination in Kabwe soils and trees is of anthropogenic origin;
- The entry-point of Pb in the trees is through the bark and leaves and not through the roots;
- Tree ring C and Pb isotopes reflect the yearly production values of the smelter within a 5-10-year shift;
- Local pine tree (*Pinus montezumae*, *L*.) rings are adequate to be used as environmental archives.

References:

Kamona A. F., Leveque J., Friedrich G., Haack U., 1999. Lead isotopes of the carbonate-hosted Kabwe, Tsumeb, and Kipushi Pb-Zn-Cu sulphide deposits in relation to Pan African orogenesis in the Damaran-Lu®lian Fold Belt of Central Africa. Mineral. Dep. 34, 273-283

Bollhöfer, A., Rosman, K.J.R., 2002. The temporal stability in lead isotopic signatures at selected sites in the Southern and Northern Hemispheres. Geochim. Cosmochim. Acta 66, 1375–1386.

Thank you!

Funding: This study was supported by the Czech Science Foundation project (GAČR 19-18513S), received institutional funding from the Center for Geosphere Dynamics (UNCE/SCI/006), and a student grant awarded to Rafael Baieta from the Grant Agency for Charles University (GAUK 946120). Part of the equipment used for this study was purchased from Operational Program Prague - Competitiveness (Project CZ.2.16/3.1.00/21516).