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Seafloor methane seepage

Sub-seafloor sediments host enormous volumes of methane, Sl iet - 00 T LR S HE e
either as free gas or as hydrates

Part of this methane is continuously released in the water column
by background seepage activity

The total modern emission of seafloor methane is underestimated,
and the volume of released methane is orders of magnitude higher .
than that reaching the sea surface =

Perturbations in the environment, such as sea-level and temperature
variations, may lead to the release of large methane volumes, which can
have important local and global impacts

This scenario has been suggested to explain extreme events in the geological
past

Wusel007-Wikimedia



Boetius & Wenzhofer (2013) Nat. G(;%i 6, 725-734

? Scientific gap

Rate of seafloor methane emission have varied through
geological time and cold seepage systems can be regionally
active on multi-million-year time scale
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Past studies have primarily focused on either ancient or
modern examples. Few have attempted to quantify long-
term methane emission using compilations of globally
distributed data

An exhaustive knowledge of the processes that may control
methane release on long, geological time scales is still missing

Defining the processes involved in long-term cold seepage is necessary for
establishing the precise relationship between geological and biochemical
processes

Brendan Philip, University of Washington



Boetius et al., 2000, Nature 407, 623-626

Materials & Methods

A robust proxy for estimating long-term seafloor methane emission is the record of
Methane-Derived Carbonates (MDC)

Between 10% and 20% of methane oxidized within near-seafloor sediments
precipitates as carbonate minerals, which are the main by-products of this process
in marine environment

Because MDC are documented in sedimentary units ranging from
the Neoproterozoicto Present, both modern and fossil MDC
potentially record the trend of seafloor methane seepage across
large intervals of geological history

We have compiled a database of worldwide occurrences of
MDC and reconstructed the history of global MDC occurrence
and natural methane emission from the seafloor across the last
150 My.

We selected data available in the literature and applied statistical
and spectral techniques to (1) characterize the robustness and
stability of the time series and (2) test the relative importance of
global changes in sea level, deep ocean temperature, and organic
carbon burialin mediating long-term methane release



Materials
&

Methods

Antarctic Pen.
Antarctica

Location of the methane-derived carbonates used in this study. Only one
representative sample for each location/age combination has been
considered
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Comparison of the MDC time
series with the records of
modelled Organic Carbon Burial
(OCB), global sea level, deep-sea
water temperature, seawater
sulfate, global sediment flux, and
large igneous provinces (LIP)

The MDC, OCB, sea level, and the
temperature time series are
interpolated to a 1 My time
interval for the purposes of
statistical analysis.

While prehistorical events are
mapped on the MDC, inferences
were made by statistical and
spectral analyses.

See Oppo et al., 2020. Scientific Reports 10:2562
for references to the time series



Principal component analysis

Sulfate and MDC variations are best correlated for principal component
analysis; however, sulfates have no cyclic behavior across the period
considered. They act as an instantaneous sources of instability for MDC at
~50Ma and ~125 Ma.

Once their effect is removed, the two most likely controllers of MDC remain
variations in sea level (corrected sea level variations - SL - in the figure we
show different models) and organic carbon burial (OCB).
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Sea-level control on MDC

Sea level affects smooth trends in MDC on timescales of the order of tens of My (with the main cyclicity found at C1=26.66
My), during which eustatic falls favored methane seepage. This is relevant especially between 71 My and 150 My but spectra
differ in the last 70 My.
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Control of organic-carbon-burial on MDC

Although an increase of MDC abundance can ostensibly be associated with short-term sea level drops (< 5 My
duration), most of the rapid sea level variations are not associated with significant cyclic variations in MDC
abundance. The addition of cyclic variations over C2 =12 My until 70 Ma highlights the similarity with OCB cyclic

variations.

OCB spectrum after 70 My ago

MDC spectrum after 70 My ago
Spectrum
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Spectrum
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OCB as
INEIEREIR
controller

The temporal correlation analysis confirms
the lack of instantaneous correlation of SL
variations, with best correlations obtained
over the entire time-span of the process,
from organic matter deposition to
thermogenic methane seepage.

Instantaneous correlation is visible for OCB.
Therefore, OCB likely represents a
parameter that instantly influences seafloor
methane emission over geologically very
short (i.e. <1 My) periods.

We suggest that the 60 My time-lag reflects
the signal of thermogenic methane, which
acts as secondary contributor to the
seafloor methane budget.
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MDC/SL time max. correlation = -37 ; Pearson correlation coefficient: -0.58
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Cyclicities

The two prominent cyclicities recognized by spectral analysis in MDC, sea level, and OCB data are :

« C1=1/26.66 My -stable across the last 150 My
 C2=1/12 My - out-of-phase cyclicity after 70 My
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The addition of these two cyclicities provides an

excellent first-order predictor of methane seepage, with Filtered residuals |
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NOAA Ocean Exploration & Research Prog.

The proposed reconstructlon of seafloor - The main controls influencing cyclic b =
methane seepage: : § “ AR methane release are: 5

#= = Relates to a large spectrum of global

e+ Sea level, mainly affecting smooth
phenomena :

trends on timescales of tens of My

" Has key implications for a better
i understanding of methane cycling at
| the present day

Organic Carbon Burial, instantly
influencing methane emission over
very short (<1 My) periods
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The dynamics of methane escape to the global ocean undoubtedly involve interrelating additional factors,
such as climate, sediment input and plate tectonics




SCIENTIFIC
REPORTS

natureresearch

OFEN Arecord of seafloor methane
seepage across the last 150 million
years

D.Oppo?’, L. De Siena’ & D. B. Kemp?




	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14

