Current and future flood risk assessment in the Danube region

Kai Schröter1, Michel Wortmann2, Stefan Lüdtke1, Ben Hayes3, Martin Drews4, and Heidi Kreibich1

1German Research Centre for Geosciences GFZ, Section Hydrology, Potsdam, Germany (kai.schroeter@gfz-potsdam.de)
2Potsdam Institute for Climate Impact Research, Potsdam, Germany
3OASIS lmf, London, United Kingdom
4Technical University of Denmark DTU, Lyngby, Denmark

Severe hydro-meteorological hazards have been increasing during recent decades and, as a consequence of global change, more frequent and intense events are expected in the future. Climate informed planning of adaptation actions needs both consistent and reliable information about future risks and associated uncertainties, and appropriate tools to support comprehensive risk assessment and management.

The Future Danube Model (FDM) is a multi-hazard and risk model suite for the Danube region which provides climate information related to perils such as heavy precipitation, heatwaves, floods and droughts under recent and future climate conditions. FDM has a modular structure with exchangeable components for climate input, hydrology, inundation, risk, adaptation and visualisation. FDM is implemented within the open-source OASIS Loss Modelling Framework, which defines a standard for estimating ground-up loss and financial damage of disaster events or event scenarios.

The OASIS lmf implementation of the FDM is showcased for the current and future fluvial flood risk assessment in the Danube catchment. We generate stochastic inundation event sets for current and future climate in the Danube region using the output of several EURO-CORDEX models as climate input. One event set represents 10,000 years of daily climate data for a given climate model, period and representative concentration pathway. With this input, we conduct long term continuous simulations of flood processes using a coupled semi-distributed hydrological and a 1.5D hydraulic model for fluvial floods. Flood losses to residential building are estimated using a probabilistic multi-variable vulnerability model. Effects of adaptation actions are exemplified by scenarios of private precaution. Changes in risk are illustrated with exceedance probability curves for different event sets representing current and future climate on different spatial aggregation levels which are of interest for adaptation planning.
Current and future flood risk assessment in the Danube region

Kai Schröter¹, Michel Wortmann², Stefan Lüdtke¹, Ben Hayes³, Martin Drews⁴, and Heidi Kreibich¹

¹German Research Centre for Geosciences GFZ, Section Hydrology, Potsdam, Germany (kai.schroeter@gfz-potsdam.de)
²Potsdam Institute for Climate Impact Research, Potsdam, Germany
³OASIS Imf, London, United Kingdom
⁴Technical University of Denmark DTU, Lyngby, Denmark

07.05.2020
Future Danube Cat-Model Overview

Climate/weather
- CORDEX-EU
 - GCM-RCM climate model simulations
- IMAGE
 - Multisite, multivariate stochastic weather generator
 - Imperial College London

Hydrology/hydraulics
- SWIM
 - Hydrological model
 - PIK Potsdam
- CaMa Flood
 - Hydraulic model
 - PIK Potsdam
- MIKE flood
 - Pluvial flood model for selected cities
 - DTU Copenhagen

Economic losses
- BN-FLEMOps
 - Probabilistic flood loss model
 - GFZ Potsdam

A Presentation by OASIS | Horizon2020 Insurance
www.h2020insurance.oasishub.co
Future Danube: climate risk information

- 4 regional climate models (CORDEX-EU)
- 2 climate scenarios (RCP-4.5 & 8.5)
Changes of fluvial flood frequencies (1970-1999 vs 2006-2035)

Future reoccurrence of the 100-year flood

Greater probability of risk of flooding

Little/no change

Lower probability of risk of flooding
100-year flooded area, reference vs current climate period

Entire catchment

<table>
<thead>
<tr>
<th>Region</th>
<th>1970-1999</th>
<th>2006-2035</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Danube</td>
<td>10.0</td>
<td>10.6</td>
<td>+6.0%</td>
</tr>
<tr>
<td>Lower Danube</td>
<td>12.5</td>
<td>14.4</td>
<td>+18.8%</td>
</tr>
<tr>
<td>Drava, Sava, Morava</td>
<td>15.0</td>
<td>17.5</td>
<td>+13.6%</td>
</tr>
<tr>
<td>Tisza</td>
<td>13.9</td>
<td>17.9</td>
<td>+13.9%</td>
</tr>
</tbody>
</table>

Area populated/industrial

<table>
<thead>
<tr>
<th>Region</th>
<th>1970-1999</th>
<th>2006-2035</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Danube</td>
<td>0.8</td>
<td>1.1</td>
<td>+16.7%</td>
</tr>
<tr>
<td>Lower Danube</td>
<td>0.6</td>
<td>0.7</td>
<td>+16.7%</td>
</tr>
<tr>
<td>Drava, Sava, Morava</td>
<td>1.3</td>
<td>1.7</td>
<td>+27.7%</td>
</tr>
<tr>
<td>Tisza</td>
<td>1.0</td>
<td>1.2</td>
<td>+15.0%</td>
</tr>
</tbody>
</table>
Changes of fluvial flood frequencies (2020-2049)

Future reoccurrence of the 100-year flood

Greater probability of risk of flooding

Little/no change

Lower probability of risk of flooding
Current and future flood risk assessment in the Danube basin

Distribution of residential and commercial assets (CORINE LULC 2012)

Zoom to Budapest region
OASIS LMF implementation of Flood vulnerability models

Residential fluvial flood loss

- Water depth
- Return period
- Relative loss
- Building area
- Flood experience
- Building type
- Precation
- Asset values
- Number employees
- Duration

Commercial fluvial flood loss

- Sector
- Water depth
- Flood experience
- Relative loss
- Precation
- Duration
- Spatial
- Asset values
- Number employees
- Return period

Residential pluvial flood loss

- hs
- bt
- pre
- wd
- dam
- d
- con
- rbloss

Logistic($\beta_{\text{loss}} + \sum \beta_{\text{loss}} X_{\text{loss}}$)

Beta(a, b)

$\beta = 1 - \mu \times \phi$

$\mu = \text{invlogit}(Z \beta_{\text{loss}})$

LOSS MODELLING FRAMEWORK
AEP curves for fluvial flood risk of residential buildings

Entire Danube catchment for historic, current and future climate periods and two RCPs
AEP curves for fluvial flood risk of commercial buildings

Entire Danube catchment for historic, current and future climate periods and two RCPs
References and online resources

• Steinhausen, Max; Schröter, Kai; Lüdtke, Stefan; Drews, Martin (2020): European exposure data for BN-FLEMO models. V. 1.0. GFZ Data Services. http://doi.org/10.5880/GFZ.4.4.2020.001

www.oasislmf.org, www.oasishub.co
Get in touch
Kai Schröter
kai.schroeter@gfz-potsdam.de

Oasis-HUB:
https://oasishub.co/organization/gfz-potsdam
https://oasishub.co/organization/pik