An ion scale magnetic structure with rapidly inflowing electrons was observed just prior to an EDR encounter [1] by MMS on July 11th 2017. Enhanced Hall magnetic field, velocity reversal, parallel heating, and large amplitude electrostatic waves are indicative of a violent mixing interaction at a sharp boundary near the reconnection separatrix. We investigate the nature of this boundary via multi-spacecraft timing, de Hoffmann Teller frame jump conditions, and dissipation in the form of J·E. Violent mixing between reconnection inflow and outflow appear coupled to compression of the separatrix.

EVENT OVERVIEW

- **P** ~ parallel to **B**
- **Q** ~ **E x B** direction
- **R** ~ Normal to layer

PARALLEL MIXING IN SECOND CROSSING

- Fast electron beam consistent with magnetic shear accompanied by high frequency beam-mode waves
- High amplitude Buneman spikes similar to mixing signatures in previous separatrix observations

INFLOW STRUCTURE

- LMN coordinates defined based on reconnection event, PQR redefined for separatrix structure
- Second crossing exhibits magnetic pileup, high amplitude wave activity, and apparent coupling between lower hybrid drift waves and parallel mixing

OHM’S LAW AND DISSIPATION

- Generalized Ohm’s Law assuming small inertial term:
 \[E + v \times B = \nabla \cdot p_e - \nabla \cdot \mathbf{J}_e + \eta \mathbf{J} \]
- Compute \(\mathbf{J} \) using curlometer technique, compare with \(v \)
- \(\mathbf{E}_e \) does not meet frozen in condition. Pressure gradient is in +R direction, so cannot make up the remainder.
- \(\mathbf{J}_e \) dissipation shown likely oscillatory – curlometer \(\mathbf{J} \) not reliable at higher frequencies
- \(\mathbf{J}_e \) overall negative contribution, possibly related to thinning of the separatrix

DISCONTINUITY ANALYSIS

DE HOFFMANN TELLER FRAME

- Change to frame with no motional \(E \)
 \[E \times B = 0 \]
 \[\mathbf{v}_{HT} = \mathbf{n} \times (\mathbf{v}_1 \times \mathbf{B}_1) / |\mathbf{B}_1| \cdot \mathbf{n} \]
- de Hoffmann Teller frame is well defined and quasi-2D
- Structure has the form of a slow shock, but reversed from Petschek orientation [2], with the inflow as the fast population

JUMP CONDITIONS / WALÉN RELATION NOT SATISFIED

- Is tangential velocity \((V_t) \) consistent with Alfvén speed?
 \[V_t = \sqrt{V_{Ti}^2 - V_{Ni}^2} \]
- Assumed steady-state and diagonal pressure tensor
- Failure of tests implies non-ideal or time-evolving behavior at the boundary

SUMMARY

Magnetic pileup is observed along the separatrix of a confirmed magnetic reconnection site. Strong electrostatic waves with velocities both parallel and perpendicular to the magnetic field are found concurrent with parallel heating of electrons, ion velocity rotation, and a density cavity expected in the reconnection separatrix. Parallel modes are indicative of rapid thermalization of an anti-parallel electron beam. Coplanarity of \(B \) and \(v \) are consistent with a (reversed) slow shock model, but jump conditions are not satisfied. Likely, the failure of these tests relates to the active compression and non-ideal activity at the boundary, also indicated by unusual generalized Ohm’s Law balance and an overall negative \(J \cdot E \).

REFERENCES