Quaternary molluskan assemblages of cold-water coral mounds:

a new perspective on deep-sea ecosystem dynamics in the western Mediterranean

Chelsea Korpanty

Leon Hoffman, Jürgen Titschack, Claudia Wienberg, Dierk Hebbeln
How do CWC mollusk communities vary over space & time?

What are the potential environmental drivers?

East Melila Coral Province
Alboran Sea
western Mediterranean
3 gravity cores

Brittlestar Ridge I
Core 30-1 ~ 340 m depth
Core 28-2
Core 29-1 ~ 440 m depth

30-1
28-2
29-1
How do CWC mollusk communities vary over space & time?

What are the potential environmental drivers?

3 Gravity Cores
- 3.6 – 4.4 m, long
- Bulk sampled
- Fauna sorted
- Mollusks counted
 - bivalves
 - gastropods
- Life-strategy traits

Environmental Proxy Records
- Off-mound sediment cores
 - Food, oxygen, grain size, temperature, salinity
- On-mound cores 14C coral ages & CT scans
 - Mound aggradation rate, coral volume & orientation

Ecological Analyses → R software
Spatial Variation: Taxonomic Diversity & Composition

Rarefaction
- Greatest diversity (at 100 specimens) → Lower Flank
- Greatest expected diversity → Mound Top, Lower Flank
- Most specimens → Upper Flank

Simpson Diversity Index
- Simpson Index: accounts for number of species & abundances
- Diversity variable among cores, time
- Diversity generally increases over time
- Diversity among cores = not significantly different (ANOSIM)

Bray-Curtis Dissimilarity MDS
- Proportional abundances of species, per sample, per core
- Greatest variability → Lower Flank
- Upper Flank, Mound Top more similar
- Species composition among cores = significantly different (ANOSIM)

Life-strategy traits (feeding, mobility) → generally similar trends, variability among cores
Temporal Variation & Drivers: Mound Top

Ecological & Environmental Trends

- **Simpson Diversity**
- **Feeding**
- **Mobility**

- **Oxygen (umol/mol)**
- **Mn/Ca**
- **Coral Volume (%)**
- **Accum. Benthic Forams**

MDS + EnvFit

- **Taxonomic Composition**: ANOSIM $R = 0.0484$, $p = 0.3707$
- **Stress**: 0.1461

Environmental Proxies
- **AR**: Mound Aggradation Rate
- **BFA**: Benthic Foram Accumulation = FOOD
- **DWS**: Deep-water salinity (correlated with DWT)
- **DWT**: Deep-water temperature
- **GS**: Mean Grain Size = FLOW / FOOD
- **Mn/Ca**: Oxygen *

*Tested separately:
 - Coral Volume (%) *
 - Coral Orientation (0-30°, 30-60°, 60-90°)

Key Results

Significant correlations MDS + EnvFit analysis:
- **Taxonomic compositions** → Coral Volume, Mn/Ca
- **Feeding trait compositions** → Coral Volume, BFA, Mn/Ca ^
- **Mobility trait compositions** → Mn/Ca ^

Greater diversity values generally associated with
- greater coral volume & oxygen
- decreased food supply
- decreased abundance of filter feeders & sessile taxa ^
- increased abundance of mobile epifaunal taxa ^

^not shown
Temporal Variation & Drivers: Upper Flank

Key Results
Significant correlations MDS + EnvFit analysis:
- Taxonomic compositions → Coral Vol, BFA, DWT, GS, Mn/Ca
- Feeding trait compositions → Coral Vol, BFA, GS
- Mobility trait compositions → Coral Vol, BFA

Greater diversity values generally associated with
- greater coral volume, oxygen, & temperature
- decreased food supply & grain size
- decreased abundance of filter feeders & sessile taxa
- increased abundance of mobile epifaunal taxa

Environmental Proxies
- AR: Mound Aggradation Rate
- BFA: Benthic Foram Accumulation = FOOD *
- DWS: Deep-water salinity
- DWT: Deep-water temperature *
- GS: Mean Grain Size = FLOW / FOOD *
- Mn/Ca: Oxygen *

Tested separately:
- Coral Volume (%) *
- Coral Orientation (0-30°, 30-60°, 60-90°)

MDS + EnvFit
Taxonomic Composition: ANOSIM $R = 0.1287$, $p = 0.1176$
Temporal Variation & Drivers: Lower Flank

Environmental Proxies
- **AR**: Mound Aggradation Rate
- **BFA**: Benthic Foram Accumulation = FOOD * (corrl. DWT, GS)
- **DWS**: Deep-water salinity * (corrl. DWT, GS)
- **DWT**: Deep-water temperature *
- **GS**: Mean Grain Size = FLOW / FOOD *
- **Mn/Ca**: Oxygen *

Tested separately:
- Coral Volume (%) *
- Coral Orientation (0-30°, 30-60°, 60-90°)

Key Results

- **Significant correlations MDS + EnvFit analysis:**
 - Taxonomic compositions → Coral Vol, BFA, GS (DWS, DWT), Mn/Ca
 - Feeding trait compositions → AR, DWT, Mn/Ca ^
 - Mobility trait compositions → AR ^

- Greater diversity values generally associated with
 - greater coral volume (& oxygen)
 - decreased grain size
 - decreased abundance of filter feeders & sessile taxa ^
 - increased abundance of mobile epifaunal taxa ^

^not shown
Conclusions

• Spatially, CWC mounds support significantly different molluscan assemblages, from mound top – lower flank

• Temporally, assemblages are variable but not sig. different

• Lower food (BFA) and food transport (GS) drive increases in taxonomic, feeding, and mobility diversities over time
 → Ecosystem less dominated by sessile, filter feeders
 → Increase in mobile species to seek reduced food supply

• Higher oxygen (Mn/Ca) promotes more mobile/energetic life strategies

• Higher coral volume likely artifact of reduced sediment input over time
 → may contribute to diversity changes by altering habitat complexity
Thanks

Sebastian Janssen
Rodrigo da Costa Portihlo Ramos
Haozhuang Wang
Andrew Tobben

EGU 2020 Organizers & Session Conveners – especially for their quick efforts to adapt the meeting to an online format