Hydrological response to **warm** and **dry** extremes in glacierized catchments: when and how are glaciers compensating?

Marit van Tiel¹, Anne F. van Loon², Jan Seibert³, and Kerstin Stahl¹

¹University of Freiburg
²VU Amsterdam
³University of Zurich
Glacierized catchments and their streamflow

Glacierized catchments are located in different mountain regions around the world. These mountain regions are the water towers of the world because they supply water (melt) to downstream areas.

Streamflow from glacierized catchments show a typical seasonal hydrological regime (1). The higher the relative glacier cover fraction, the stronger the seasonality. This general pattern is similar for catchments around the world, but there are differences, for example due to different precipitation regimes and catchment characteristics. Streamflow of highly glacierized catchments correlate strongly with temperature variations (2).

![Graph showing seasonal hydrological regime with data from different countries like Austria, Switzerland, Norway, Chile, Canada, and Alaska.](https://example.com/graphics)

Hydrological regime
Measured streamflow data from many catchments around the world

1. Streamflow graphs for various countries showing discharge over DOY (Jan-Dec/Jul-Jun) with size triangles indicating glacier cover fraction.

van Tiel et al., EGU 2018
Hydrological response to warm climate and warm and dry weather

Glaciers can compensate for a lack of rainfall-runoff in warm and dry climate and weather, because glacier runoff is driven by temperature rather than precipitation. Compared to snow, the glacier storage is not related to winter precipitation (on shorter timescales). The question is what effect this compensation effect has on streamflow at different timescales and in different catchments.

1. Long-term variability
When glaciers compensate is changing over time due to climate change and glacier retreat
Where glaciers retreat, streamflow initially increases

2. Interannual variability
When glaciers compensate the interannual streamflow variability is reduced
Where variability is lowest depends on glacier cover fraction and other characteristics

3. Glacier melt buffer to warm & dry events
When glaciers compensate they do that especially during warm and dry extremes
Where glaciers buffer there is a certain resilience to drought conditions
Due to climate warming, glaciers are retreating, which affects the downstream water supply. In a warming climate, glaciers will initially melt more, but the glacier volume will decrease, eventually leading to less glacier melt contribution. The change point can be in the past or in the future and the timing is different for catchments and regions. In the future, when glaciers have retreated significantly, regimes will change (1, showing a changing streamflow drought threshold), and there will be a lack of water in late summer compared to today’s conditions (2).
Interannual streamflow variability

The **glacierized part** and **non-glacierized** part of a catchment together control the streamflow signal. The runoff from these two parts are **negatively correlated**. Runoff is high during **warm and dry** conditions in the glacierized part, and high during **cold and wet** periods in the non-glacierized part. If these two parts can counterbalance each other, **interannual streamflow variability is reduced** (1). Our study showed that this effect can be **modelled** and that an optimum glacier cover, where variability is lowest, is between 10-15%. **Gauged catchments** in the **Alps** show a similar pattern but with more scatter and less clear relationship between streamflow variability and glacier cover fraction (2).

1. ![Diagram 1](image1)
2. ![Diagram 2](image2)

Streamflow variability high for low and high glacier covers: precipitation or temperature variability dominate streamflow

van Tiel et al., 2020
Now, I am analyzing the hydrological response to warm and dry events in catchments with long streamflow records in Canada, Norway and the Alps. The catchments vary in size, elevation, glacier cover fraction and also climatic regime.
Selecting warm & dry events

I selected warm and dry events based on several criteria:
- precipitation should be below 1.5 mm
- the 10 day positive degree day sum should be above the threshold which is based on the 80th percentile (only 20% of the events in a certain period are warmer)
- The event should last at least 10 days
- If the event is interrupted by 1-2 days, the days before and after the interruption are taken together as one event

Streamflow response to warm and dry events:
- Above or below regime?
- How much?

Selected event from 1990-07-16 – 1990-08-02 in Swiss catchment with 13.5 glacier cover fraction

Temperature threshold
Temperature 10 days positive sum

Precipitation threshold 1.5 mm

Daily precipitation

Daily streamflow

Streamflow regime
W&D events in all shapes and sizes

Q almost during whole event below 'normal', but increasing

Norway catchment -32.7% glacier cover

Canada catchment -4.1% glacier cover

Q above and close to normal conditions during event, but catchment has relatively low glacier cover,
W&D events in all shapes and sizes

Extreme warm and dry year 2003
Streamflow high above normal

Swiss catchment -56.5% glacier cover
Some high P amounts, even in this European dry year

Swiss catchment -2.5% glacier cover
Less streamflow than normal – glacier melt cannot buffer enough
When do warm & dry events occur?

Most events start in September in the European Alps and during July in Norway and Canada (when precipitation shows a dip (slide 6). The events are distributed over the analysis period and the duration varies from 10 to more than 35 days.
The higher the glacier cover fraction, the less days streamflow is below the normal regime during the event and the more streamflow is generated that is above the regime. Pattern is most clear for the Alps. Norway and Canada seem to have the switching point of negative to positive streamflow surplus at lower glacier cover fractions.

Glaciers can compensate during warm and dry weather

When - during most of the events if glacier cover is high enough (>10-15%), more detailed analyses needed for individual catchments and events

Where glacier cover fractions are high and possibly where summer rain is low
