The role of spatial and temporal model resolution in a flood event storyline approach in Western Norway

Nathalie Schaller, J. Sillmann, M. Müller, R. Haarsma, W. Hazeleger, T. J. Hegdahl, T. Kelder, G. van den Oord, A. Weerts and K. Whan
EGU Vienna, May 2020
Motivation

• A physical climate storyline approach is applied to an autumn flood event in the West Coast of Norway caused by an atmospheric river

• Event of interest: October 2014 floods

• Demonstrate the value and challenges of higher spatial and temporal resolution in simulating flood impacts
Operational modelling chain

ECMWF (global model) → AROME MetCoOp (regional model) → Observations

State Meteorologists

National flood warning

Commercial Partners like renewable energies

Data dissemination server

Courtesy of Malte Müller
Storyline modelling chain

• Global high-resolution (~25km) atmosphere-only simulations:
 – 6 ensemble members 2002-2006 (obs SST)
 – 6 ensemble members 2094-2098 (RCP 4.5, ΔSST from SRESA1B)

EC–EARTH (global model)
Storyline modelling chain

- Global high-resolution (~25km) atmosphere-only simulations:
 - 6 ensemble members 2002-2006 (obs SST)
 - 6 ensemble members 2094-2098 (RCP 4.5, ΔSST from SRESA1B)
- Select most extreme event in October for West Coast, for PRESENT and FUTURE
- 2 events x 10 initial condition perturbations = 20 simulations at ~25km resolution with EC-EARTH
Storyline modelling chain

- Boundary conditions from EC-EARTH to run AROME-MetCoOP (2.5km)
Storyline modelling chain

- EC–EARTH (global model)
- AROME MetCoOp (regional model)
- HBV distributed / lumped

- HBVlump as used by stakeholder NVE to assess effect of higher spatial resolution
- HBVdist to assess effect of higher temporal resolution
Results

- Cumulative precipitation in West Coast region in EC-Earth and AROME
Results

• Precipitation change FUTURE-PRESENT
Results: HBVlump (effect of spatial resolution)

- Streamflows generally higher in AROME compared to EC-Earth
- Future event streamflows higher for Røykenes but not for Flåm
Results: HBVdist (effect of temporal resolution)

- Peak streamflows more realistic with hourly vs daily input (both AROME)
Conclusions

- EC-Earth & AROME simulate extreme precipitation event caused by AR realistically.
- In AROME simulations, precipitation occurs more localised than in coarser EC-Earth simulations: some catchements are not hit, but those that are experience larger precipitation amounts.
- Peak streamflows therefore higher when using AROME input in HBV model.
- Hourly input further produces higher streamflows compared to daily input.
- Streamflow peaks on average higher in a future climate BUT not every future event hits every catchment.
Lukas Brunner

«Investigating the impact of atmospheric blocking on temperature extremes across Europe using an objective metric»

nathalie.schaller@cicero.oslo.no

cicero_klima
cicero.oslo.no
cicerosenterforklimaforskning
Atmospheric rivers detection

Atmospheric river: long narrow and transient corridor of anomalously strong horizontal water vapor transport

Topography

Oct-Nov-Dec 99th percentile daily precipitation

°CICERO