TRANSPORT UNDER ADVECTIVE TRAPPING

Juan J. Hidalgo1, Insa Neuweiler2, and Marco Dentz1

1IDAEA-CSIC, Barcelona, Spain

2Leibniz Universität Hannover, Hannover, Germany
Motivation:

- Advective trapping occurs when solute enters low velocity zones in heterogeneous porous media.
- Classical approaches combine slow advection and diffusion into a dispersion coefficient or a single memory function.

Objective

- We investigate advective trapping in homogeneous media with low permeability circular inclusions.
- We build an upscaled model in the continuous time random walk framework.
Mean velocity in the matrix is proportional to the area occupied by the inclusions χ.

Velocity in the inclusions is not constant. The mean velocity in the inclusions \overline{v}_i is log-normally distributed and proportional to χ.

Figure 1: Streamlines in a medium with randomly placed inclusions.

Figure 2: Velocity distribution inside the inclusions (top) and mean velocity distribution (bottom).
The breakthrough curves reflect the trapping of particles in the low permeability inclusions.

The trapping rate follows a Poisson distribution.

Figure 3: Transport through a medium with randomly placed inclusions.

Figure 4: Breakthrough curves at increasing distance from the inlet and advection-dispersion equation solution fit (top). The number of trapping events follows a Poisson distribution (bottom).
We consider advective-dispersive particle transitions in the mobile matrix

\[dx(s) = v_{\text{matrix}} ds + \sqrt{2D_m ds} \xi(s), \]

with \(s \) the mobile time spend outside the inclusions, \(D_m \) is diffusion (from Eames & Bush, 1999) and \(\xi(s) \) a Gaussian white noise.

During the mobile time \(s \) particles encounter \(n_s \) inclusions. The clock time \(t(s) \) after the mobile time \(s \) has passed is given by

\[t(s) = s + \sum_{i=1}^{n_s} \tau_i \]

where \(n_s \) is Poisson distributed and the trapping times \(\tau_i \) depend on the distance (random uniform) and the velocity at the visited inclusion (random log-normal)
FIGURE 5: Breakthrough curves at increasing distance from the inlet (dots) and upscaled CTRW model results (solid line).
Purely advective transport was here considered as a limiting case for advective-diffusive transport.

The shape of breakthrough the curves cannot be predicted with a macrodispersion coefficient.

We developed a CTRW model developed parameterized by measurable medium properties: the trapping rate (Poisson distributed), the velocity in the matrix (a function of χ) and the mean velocity distribution inside the inclusions (log-normal).