Lithosphere deformation due to tearing at STEPs
an analogue model approach
Taco Broerse, Ernst Willingshofer, Dimitrios Sokoutis, Rob Govers

Physical model of STEP evolution

questions
• how does the surface deform close to STEPs?
• where does tearing occur?

Lithosphere: Newtonian (low stress) / power-law rheology (high stress)
Asthenosphere: Newtonian rheology

- no overriding plate (or: very weak overriding plate)
- pre-existing tear for first part of slab
- no other weak zones
Lithosphere deformation due to tearing at STEPs
an analogue model approach

Model lithosphere rheology

Zero stress viscosity scaled:
6.10^{25} \text{ Pa s}

- mix of plasticine-silicone polymer
- transition to power-law rheology with increasing stress
- stress weakening required for localization of deformation
Lithosphere deformation due to tearing at STEPs
an analogue model approach

Model evolution

- Rollback ahead of tearing
- Tearing commences as thinning

successive side views
Lithosphere deformation due to tearing at STEP\textsubscript{s} an analogue model approach

Model evolution

Resistance to tearing results in:
- theater shaped subduction zone
- surface extension
Lithosphere deformation due to tearing at STEPs
an analogue model approach

Outlook

Model applicable to natural subduction zones?

Late tearing may explain seemingly absent STEP such as in eastern Hellenic subduction zone.